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ABSTRACT 

In a widely cited paper, Leron (1983) proposed presenting proofs in a novel 

format that he called “structured proofs” and suggested that presenting proofs in this 

format improved students’ comprehension. Our research investigates how structured 

proofs might aid or hinder students’ comprehension. In a qualitative study, we 

presented structured proofs to students to examine how they read and perceived this 

type of proof presentation. Although some students valued the summaries contained 

in structured proofs, many complained that structured proofs “jumped around” and 

required them to scan different parts of the proof to coordinate information. In a larger 

quantitative study, we found that students who had read a structured proof were 

better at identifying a good summary of the proof than students who had read a linear 

proof, but performed somewhat (although usually not statistically significantly) worse 

on questions concerning justifications within the proof, transferring the ideas from the 

proof to another setting, and illustrating the ideas of the proof using examples. 

Key words: Proof; Proof comprehension; Structured proofs; Undergraduate 
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1. INTRODUCTION4 

 

1. 1. Proof presentation and comprehension in advanced mathematics 

courses 

Advanced mathematics courses—that is, tertiary proof-oriented mathematics 

courses for mathematics majors—are typically taught in lecture format where a 

significant portion of these lectures consists of the professor presenting proofs of 

theorems to his or her students. For instance, based on her observations of the 

lectures of three mathematics professors, Mills (2011) observed that roughly half the 

lecture time was spent on proof presentation. Numerous mathematicians and 

mathematics educators have commented that mathematics is typically presented to 

students in a definition-theorem-proof format (e.g., Davis & Hersh, 1981; Dreyfus, 

1991; Thurston, 1994; Weber, 2004).  

Presumably, an assumption behind this pedagogical practice is that students 

will learn mathematics by reading and studying the proofs that their professors 

present. However, many question whether this assumption is justified. Both 

mathematicians and mathematics educators have remarked that students generally 

are confused by the content of formal proofs (e.g., Alcock, 2010; Davis & Hersh, 

1981; Hersh, 1993; Leron & Dubinsky, 1995; Mamona-Downs & Downs, 2002; 

Rowland, 2001; Thurston, 1994; Weber, 2010; Weber & Mejia-Ramos, 2014). 

Griffiths (2000) defined a proof as “a formal and logical line of reasoning that 

begins with a set of axioms and moves through logical steps to a conclusion” (p. 3). 

These types of proofs usually proceed linearly, incorporate formal syntax, and make 

little use of informal representations of the relevant mathematical concepts, such as 

diagrams and examples. Mathematicians and mathematics educators have argued 

that this type of presentation might hinder comprehension for several reasons. Some 

researchers claim that the linear nature of proof presentation can prevent students 

from seeing the structure of the proof or the overarching method being applied in the 

                                                           
4
 An earlier version of this paper appeared in the Proceedings of the 14

th
 Conference for Research in 

Undergraduate Mathematics Education (Fuller et al, 2011), which is not copyrighted. This earlier manuscript 
differs from this paper in that the Interview Study Group A and Interview Study Group B are now treated as 
pilot data. 
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proof, making the ideas of the proof appear mysterious (Anderson, Boyle, & Yost, 

1986; Davis & Hersh, 1981; Leron, 1983). The use of formal syntax and domain-

specific jargon can be intimidating to students and mathematicians alike (Davis & 

Hersh, 1981; Hersh, 1993; Kline, 1973; Thurston, 1994). Several researchers have 

argued that the formal presentation of proofs masks the intuitive mathematical ideas 

and models that were used to produce (and are needed to comprehend) these proofs 

(Dreyfus, 1991; Hersh, 1993; Thurston, 1994). Consequently, some mathematics 

educators have proposed that proofs would be more easily understood if they were 

presented in a different manner. 

 

1. 2. Alternative formats for presenting proofs 

Several researchers have proposed alternative methods of proof presentation. 

Rowland (2001) suggested using “generic proofs”: proofs that illustrate why a general 

theorem is true by showing how the theorem holds for a specific example, so that the 

reasoning used for this specific example could generalize to any other example. 

Rowland suggested that formal proofs can be preceded by generic proofs or, 

perhaps, generic proofs can be given in lieu of formal proofs. Rowland reported that 

his students generally preferred generic proofs to formal proofs. In a subsequent 

qualitative study, Malek and Movshovitz-Hadar (2011) performed a preliminary 

assessment of generic proofs, asking students to try to prove a theorem, then giving 

these students a generic or linear proof of the theorem, and finally giving students a 

test on how well they comprehended the proof. Malek and Movshovitz-Hadar found 

that for non-routine proofs, students who read the generic version of the proofs 

performed better on the comprehension test than those who read the linear version. 

However, only three to four students read the generic proofs; hence, the 

generalizability of these results is limited. 

Alcock (2009) suggested using “e-proofs”: proofs presented in a computer 

environment that highlighted the logical connections between different parts of the 

proof and allowed users to request explanations about these connections. Alcock 

designed this type of proof presentation with the intention of improving students’ 

proof comprehension (Alcock, 2009, 2010; Alcock & Inglis, 2010). However, a 

subsequent study found that students who read a proof in real analysis using e-
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proofs did not perform better on an immediate post-test and a delayed post-test than 

students who read the same proof as normal text; the e-proofs students performed 

significantly worse on both immediate and delayed post-tests when compared with 

students who saw the same proof given in a lecture (Roy, Alcock, & Inglis, 2010). 

Finally, some researchers have suggested using less rigorous but more 

intuitive arguments to support a theorem, such as arguments based on graphs or 

diagrams (e.g., Hersh, 1993). To our knowledge, empirical studies have not yet been 

conducted to assess the efficacy or drawbacks of this recommendation. 

There are three themes in this review of the literature that are worth noting. 

First, empirical assessments of alternative formats for proof presentation are rare and 

only beginning to emerge. Second, the few studies conducted have not found 

generalizable evidence that the suggested proof formats actually improve 

comprehension5. Third, there is considerable variety in the methodologies used to 

assess the efficacy of alternative proof formats, with these formats being assessed in 

a lecture format (Rowland, 2001), a reading format (Roy et al, 2010), and reading 

after attempting to prove the theorem oneself (Malek & Movloshitz-Hadar, 2011). 

Assessments ranged from paper-and-pencil tests (Roy et al, 2010) to self-reported 

preferences (Rowland, 2010). 

 

1. 3. Leron’s structured proofs 

1. 3. 1. Description of Leron’s structured proofs 

Leron (1983) proposed a novel way to present proofs in terms of levels, where 

each level is an independent module of the proof. The highest level (Level 1) 

provides a summary of the main ideas of the proof without providing detail on how 

these main ideas will be carried out. The next level (Level 2) provides a summary of 

how each of the main ideas will be implemented. Successively lower levels fill in the 

                                                           
5
 This does not imply that these alternative presentation formats lack pedagogical value; perhaps they benefit 

students in ways that were not assessed or would benefit students more if these formats were introduced 
differently. This raises the possibility that students’ failures to learn from proof are due to other factors, such as 
poor proof reading strategies, or that having students read theorems and then proofs, without other activities 
such as exploring the meaning of the theorem or trying to prove the theorem oneself, is not conducive to 
learning. Note that in this paper, we are neither advocating nor discouraging the use of the definition-theorem-
proof format commonly used in advanced mathematics courses, but are simply assessing a suggestion for 
making this format more effective.  
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details of the implementation of higher levels of the proof. An additional feature in 

some structured proofs is a section called an “elevator,” which is located between 

levels and provides a rationale for why the proof is proceeding the way that it is. 

Leron illustrated the nature of a structured proof by comparing a linear and structured 

proof of the claim: “There are infinitely many triadic primes” (where a triadic prime is a 

prime congruent to 3 modulo 4). We used these proofs in our studies and they are 

presented in Appendix A of this paper, nearly verbatim from Leron’s article. In this 

proof, Level 1 lays out a summary of the three main aims of the proof while the 

“elevator” provides a motivation for defining the variable M as it is defined in the 

proof. Leron noted that not all proofs were amenable to a structured proof format; the 

ideal candidates for these proofs are longer, complicated proofs whose structures are 

not transparent in a linear presentation (p. 176). 

 

1. 3. 2. Theoretical benefits of structured proofs 

Leron argued that structured proofs possess several desirable properties. The 

format provides the reader with a summary of the proof and enables the reader to 

grasp the main ideas of the proof without getting lost in its logical details. However no 

information is lost as this format still enables the reader to study or verify these 

logical details if he or she desires to do so. In addition, the high-level structure and 

the “elevator” commentary explicate the reasoning behind some of the choices made 

in the proof that might otherwise seem arbitrary. Weber and Mejia-Ramos (2011) 

found that mathematicians claim to understand proofs in terms of their high-level 

ideas and methods (see also Mejia-Ramos & Weber, 2014). Structured proofs make 

these constructs explicit for the reader. We note that Leron’s suggestion seeks to aid 

comprehension in a different manner than the other alternative proof formats 

mentioned previously. Whereas generic proofs (Rowland, 2001) and informal proofs 

seek to reduce the abstraction in a formal proof by framing it in less intimidating 

representation systems (e.g., with examples or diagrams) and Alcock’s (2009) e-

proofs aim to make explicit the justifications and connections in a proof that are 

usually tacit, Leron advocates helping students manage the complexity of formal 

proofs by making the structure of the proof apparent and motivating the ideas in it. 
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1. 3. 3. Structured proofs as a pedagogical suggestion or a research-based 

claim 

Leron (1983) published his discussion of structured proofs in the American 

Mathematical Monthly, an expository mathematics journal, to share his ideas of how 

proofs might be presented better. He was clear that he did not advance his 

suggestion as an established research-based claim, writing “I do not know of any 

way to prove (or disprove) my claims on the merits of the structured methods” (p. 

176). However, his pedagogical suggestion was nonetheless influential in the 

mathematics education community, with many citing Leron’s structured proofs as a 

potential way to improve students’ proof comprehension (e.g., Alibert & Thomas, 

1991; CadwalladerOsker, 2011; Hanna, 1990; Hersh, 1993; Mamona-Downs & 

Downs, 2002; Movshovitz-Hadar, 1988; Selden & Selden, 2003, 2008).  

Some researchers have gone further, touting structured proofs as a 

pedagogical suggestion supported by research or claiming that structured proofs are 

appropriately influencing the way that advanced mathematics courses are taught. In 

a book chapter providing research-based pedagogical suggestions to 

mathematicians, Selden and Selden (2008) recommended Leron’s structured proofs 

as a means of helping students understand the proofs that they read and learn about 

the process of writing proofs. Mamona-Downs and Downs (2002) claimed that 

structured proofs are influencing the ways that proofs are currently written in 

advanced mathematics textbooks. Melis (1994) wrote that “Uri Leron shows how 

proofs are better comprehensible by structuring them into different levels” (p. 2), 

implying that the claim that structured proofs improve comprehension is not a 

hypothesis but rather an established fact. Despite these claims, we are aware of no 

empirical studies that suggest structured proofs actually improve mathematical 

instruction or proof comprehension. 

 

1. 4. Research questions 

The studies in this paper are based on the premise that an important 

mechanism for growth in mathematics education is to examine the effects of 

promising pedagogical suggestions, where we follow Schoenfeld (1994) in 
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operationalizing a “promising pedagogical suggestion” as one evaluated favorably by 

many mathematics educators. As structured proofs are regarded highly by many 

mathematics educators and presented by some as a research-based suggestion, we 

are trying to measure the ways in which structured proofs improve student 

comprehension and to explore any difficulties that students may experience when 

reading them.  

Of course, one cannot address questions such as “do structured proofs 

improve comprehension?” in a single series of studies, as the answer to this question 

likely depends on what constitutes comprehension, which proofs were structured, 

and how structured proofs were introduced to students, among other factors (see, 

e.g., Schoenfeld, 2000). In particular, whether a researcher observes the utility of an 

alternative proof format depends on whether his or her method for measuring 

comprehension is consistent with the intended benefits of the format. The 

pedagogical suggestion of structuring proofs can be implemented in a variety of 

ways. Students could be asked to read structured proofs as text in a short period of 

time, students could be asked to study a structured proof overnight, or a professor 

could present a structured proof in lecture for his or her students. Further, perhaps 

using linear and structured proofs in tandem (e.g. having students structure linear 

proofs they are given) might yield greater learning benefits than using either in 

isolation. In this paper, we compare students’ comprehension of a proof shortly after 

reading a linear or structured version of the same proof. We contend that this choice 

is appropriate for three reasons. First, Leron (1983) asked readers of his pedagogical 

suggestion to “pretend to be a student reading these proofs for the first time” (p. 176), 

implying that he felt his suggestion would benefit students reading proofs. Second, 

textbook presentation is a natural way to implement structured proofs in the 

undergraduate mathematics curricula (see Mamona-Downs & Downs, 2002). Third, 

previous studies on the benefits of alternative formats for proof presentation (e.g., 

Malek & Movshovitz-Hadar, 2011; Roy et al, 2010) have also measured students’ 

comprehension shortly after they read these proofs in traditional and innovative 

formats. Using a similar procedure facilitates comparisons between our findings and 

those in the literature. However, it is certainly plausible that any learning benefits that 

we did not observe in these studies might occur if the structured proofs were used in 

a different way, or if students were given more experience with this format. 
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Based on our model of proof comprehension assessment (Mejia-Ramos et al., 

2012), our primary assessment items evaluated students’ comprehension in four 

ways:  

(a) Can students recognize a good summary of the proof that they read? 

(b) Do students recognize how the ideas used in the proof can transfer to another 

setting? 

(c) Do students recognize how various claims within the proof are justified?   and 

(d) Can students apply the ideas in the proof that they read to a specific example 

or diagram? 

There are other potential benefits of structured proofs that we did not assess 

in these studies. For instance, perhaps by reading structured proofs, students might 

develop a more accurate understanding of the proof writing process and a deeper 

appreciation for the enterprise of proof (as suggested by Selden & Selden, 2008).  

The two specific research questions we investigate are: 

 From the students’ perspective, what specific features of a structured proof 

help or hinder proof comprehension? 

 To what extent do students who read a structured proof display a greater 

ability to answer assessment items of the four above types than students who 

read the same proof as a traditional linear proof? 

Given the general limitations of our study, as well as the difficulty of 

addressing these types of conceptual questions, we do not view the results of our 

study as conclusive (if conclusive answers to these types of questions are even 

possible to obtain). Rather, we view these studies as an important first step to 

examining the benefits and drawbacks of using structured proofs. 

 

2. STUDY 1: QUALITATIVE INTERVIEW STUDY 

 

2. 1. Rationale for the qualitative study 
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Study 1 was an interview study in which students were videotaped while 

reading structured proofs, answering questions about those proofs, and responding 

to open-ended questions about how they felt about the structured proof presentation. 

The purpose of these interviews was to examine how students read and reacted to 

structured proofs, and to gain insight into how this type of proof presentation might 

help or hinder students’ comprehension of a proof.  

 

2. 2. Methods 

2. 2. 1. Participants 

Students were invited to participate in the study from a large state university in 

the northeast United States. We initially recruited a group of 12 students to 

participate in a pilot study in the beginning of the Fall 2010 semester. These students 

were recruited from a transition-to-proof course, an introductory real analysis course, 

and a mathematics education course for mathematics majors who were prospective 

secondary mathematics teachers. These courses were primarily composed of 

second and third-year mathematics majors. These 12 students were divided evenly 

into two groups, each group looking at one of two structured proofs and another 

linear proof (we refer to these groups as Pilot Group A and Pilot Group B). We 

discuss the materials and the treatment given to these groups in the following 

sections. 

After interviewing the students in this pilot study, it became clear to us that 

some of the students were deeply confused about the nature of structured proofs. 

We believed one cause of their difficulty was that they were not given an adequate 

description of the nature and purposes of structured proofs. Furthermore, the linear 

proofs did not generate data of significance to our study. Consequently, we viewed 

data from these students as pilot data. At the end of the Fall 2010 semester, we 

recruited six more students from another section of the introductory real analysis 

course and conducted the study again (we refer to these students as the Interview 

Group). This time we asked each student to read both structured proofs, but only 

after giving them a description about the nature of a structured proof. Our analysis 

focuses primarily on the six students in the Interview Group, but we also discuss the 
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students from the Pilot Groups to illustrate how they corroborate the themes we saw 

from the Interview Group. 

 

2. 2. 2. Materials 

Two proofs were used for this study. We call the first proof the Only Zero 

proof, which was a calculus-based proof of the claim that the only solution to the 

equation                is    . The linear and structured Only Zero proofs 

are presented in Appendix B. The second proof, which we call the Triadic Primes 

proof, establishes that there are infinitely many triadic primes (i.e., primes congruent 

to 3 modulo 4). The linear and structured Triadic Primes proofs were taken nearly 

verbatim from Leron’s (1983) original article on structured proofs6 and are presented 

in Appendix A.  

 

2. 2. 3. Procedure 

Each participant met individually with an author of this paper for a video-

recorded semi-structured interview. Participants were given a version of one of the 

proofs and asked to read this proof until they felt that they understood it. The 

participants were informed that after they had studied the proof, the proof would be 

taken away from them and they would have to answer questions about what they had 

just read. 

When participants finished reading the proof, they were asked to judge, on a 

scale of one through five, how well they felt they understood the proof. They were 

then asked a set of open-ended questions about the proof, assessing the four 

aspects of proof comprehension mentioned earlier. Participants were given a sheet 

of paper with each question written on it so they would not have to keep in mind the 

question while trying to remember the relevant details of the proof. After participants 

answered these questions, they were given a set of multiple-choice questions, which 

were similar to the questions they had just answered. After answering all the 

                                                           
6
 We chose the Triadic Primes proof because this would clearly be consistent with Leron’s (1983) intention. 

However, many who have heard presentations of this research and two reviewers of this manuscript note that 
the high-level structure of the Triadic Primes proof seemed needlessly complex. Consequently, any difficulties 
understanding this structured proof could plausibly be attributed to how it was written.  
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questions, the interviewer returned the proof to the participants and invited them to 

change any of their answers as they saw fit. Participants usually did not change any 

of their answers. If participants read the structured version of the proof, they were 

asked how they felt about this new format, whether they liked it, and what they 

thought the strengths and weaknesses of this format were. This entire process was 

then repeated with the other proof. 

Pilot Group A received a linear version of the Only Zero proof and a structured 

version of the Triadic Primes proof. Pilot Group B received a structured version of the 

Only Zero proof and a linear version of the Triadic Primes proof. The Interview Group 

first read a description describing the nature of structured proofs (this is presented in 

Appendix C), and then read structured versions of both the Only Zero and Triadic 

Primes proofs. 

 

2. 2. 4. Analysis 

In our analysis, we sought to identify attributes of structured proofs that may 

have aided or hindered the participants’ comprehension of the proof. We made an 

initial pass through the data noting: (a) any positive comments that participants made 

about the structured proofs that they read, (b) any moments of insights that 

participants expressed while reading the structured proofs, (c) any negative 

comments that participants made about the structured proofs that they read, and (d) 

any confusion expressed by the participants while reading the structured proofs or 

answering questions about the proofs. During this initial pass through the data, we 

noted three themes that emerged from our data: (1) some participants valued the 

summaries provided in Level 1 of the structured proofs, while others had difficulty 

understanding these, (2) some participants valued that structured proofs provided 

insight into the thought processes used to create the proof, and (3) most participants 

complained that structured proofs were difficult to follow because they “jumped 

around”. We then systematically re-analyzed the data, coding for any instances of 

these phenomena.  

 

2. 3. Results 



 Comprehending Structured Proofs 

 

12 – v.7(1)-2014 

JIEEM – Jornal Internacional de Estudos em Educação Matemática 
IJSME – International Journal for Studies in Mathematics Education 

A summary of the results is presented in Table 1. 

Table 1: Number of participants in the qualitative study expressing each positive or negative opinion about 

the structured proof. 

GROUPS 

 

    Interview Group   Pilot Group A Pilot Group B 

Category          (N=6)          (N=6)_      (N=6)      

Summaries in Level I 

 

   Appreciated the summaries  3    0  2 

 

   Did not like the summaries  2    2  0 

 

 

Explaining reasoning  

behind the proof 

 

   Appreciated that this was done  2    2  1 

 

   Did not like that this was done  2    1  0 

 

 

Thought proof jumped around  5    4  5  

too much 

 

2. 3. 1. Summaries 

Level 1 of a structured proof is essentially a summary of the main ideas of the 

proof. Three participants in the Interview Group explicitly mentioned the value of 

providing this summary, as it provided them with a framework to interpret the rest of 

the proof. For instance, consider the comment below: 

IG 6 7: I actually like how this proof is written out. It’s really step-by-
step. Because first they said in level one, this is what we’re going to 
attempt to do. So he said first we’re going to prove that zero is a 
solution, and that’s kind of clear, you can just plug it in. And then they 
said now we want to show that the function is increasing for all x, and 
they do that here (pointing to 2b on the structured Only Zero proof). 

Later, this student commented that this made the proof easier to follow: 

IG 6: I like how he took the different steps and made it really easy to 
follow. I don’t think you really need to be a math major to kind of 
follow that. 

Two students in Pilot Group B, who read the structured version of the Only 

Zero proof, also complimented the summary in Level 1. One student described this 

as, “Okay, there’s three goals in this proof… it’s like stating objectives. It clearly 

                                                           
7
 IG 6 stands for the sixth interviewed student in the Interview Group. 
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states at the beginning, we’re going to prove this using these three goals. Bang, 

bang, bang”. It is interesting to note that no student in Pilot Group A, who read a 

structured version of the more challenging Triadic Primes proof, spoke favorably of 

the summary in Level 1 of this proof. 

Two participants in the Interview Group did not appreciate the summary in 

Level 1 because they did not understand it. Consider the comment by an Interview 

Group participant: 

IG 1: [Referring to Level 1 of the Triadic Primes Proof] This by itself 
doesn’t make a lot of sense to me. I couldn’t figure out what this even 
meant or why they were doing it, where M came from, none of it. So 
when I read this [pointing to the rest of the proof], it made more sense 
[…] If you put Level 2 in it, it makes so much more sense. 

One intended benefit of structured proofs is that the high-level summary of 

Level 1 enables the reader to more fully appreciate and comprehend the logical 

justifications that appear in the lower levels of the proof. However, for this participant, 

the levels had the opposite effect. He needed to read Level 2 to make sense of the 

summary in Level 1. Two participants from Pilot Group A, who read a structured 

version of the Triadic Primes proof, made similar complaints.  

From our perspective, a substantial benefit of including Level 1 in a structured 

proof is to provide a framework or schema to integrate the chain of deductions that 

follow by providing them with purpose. However, if participants fail to adequately 

understand Level 1, they will either be trying to integrate the ideas from Level 2 into 

an inappropriate framework, which could lead to confusion, or they might struggle to 

remember the ideas contained in Level 1, leading to a strain on their working memory 

and a dissatisfaction that the proof was jumping around (discussed further in the next 

sub-section).  

We propose the following hypothesis to account to account for this data: If 

participants are familiar with the ideas and methods outlined in Level 1 of a 

structured proof, reading Level 1 may provide them with a useful framework to 

understand the logical details that follow. However, if the ideas and methods outlined 

in Level 1 are novel to students, the summary here is more likely to confuse students 

and fail to provide a useful framework for integrating information. This could account 

for the fact that the summaries for Level 1 were more valued by participants reading 

the structured version of the Only Zero proof, where the calculus-based techniques 
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were presumably familiar to students, than to those reading the structured version of 

the Triadic Primes proof, where the techniques were presumably less familiar to 

students. The following excerpt below provides evidence that the familiarity with the 

technique of the proof was key to understanding Level 1:  

IG 2: [Structured proofs] were a disaster, to be blunt. That proof using 
Rolle’s theorem and using derivatives and stuff. I took analysis so we 
did proofs like that for an entire semester. So when I was faced with 
that proof, I already knew where it was going, I had seen things like it 
before, it was very familiar to me. So even though the style of the 
proof wasn’t exactly my cup of tea I was still able to absorb a lot of 
the information because I was familiar with saying ok you know we’re 
using a derivative argument, we’re using a Rolle’s theorem argument 
and what not. But for this proof [the Triadic Primes Proof], like I said 
the only proof I’ve ever seen in that form was the proof that there 
were infinitely many primes and if you asked me to write that down 
right now, I probably wouldn’t be able to, to be honest. Although I 
think it’s very elegant, it’s not a proof skeleton or a proof form that I 
use very often, so although I knew what the proof was getting at, I 
wasn’t able to absorb it as well simply because it’s not something I 
see very often. 

This participant argues that he was able to understand the structured proof of 

the Only Zero theorem in spite of the structured proof format because he had 

familiarity with the type of argumentation used in the proof. He lacked similar 

experience in number theory and consequently could not use the “proof skeleton” in 

Level 1 to “absorb” the details of the proof. 

 

2. 3. 2. The reasoning behind the proofs 

Two participants from the Interview Group valued structured proofs because 

they made clear the reasoning behind the proofs. Both participants mentioned the 

“between levels” step in the Triadic Proof. For example: 

IG 6: The between steps really kind of breaks down what the thought 
process is when defining that M. Like why we chose it, what we would 
normally choose, why that isn’t a good one, and how we lead up to 
what that number is going to be. 

Three participants from the Pilot Groups expressed a similar appreciation. 

However, we note that the “between levels” was not universally appreciated by all 

participants. One participant in the Interview Group was confused about why the 

“natural” choice for M that was not chosen in the Triadic Proof was natural, saying, 

“It's not really clear because he says, ‘It is natural try M = 4p1p2...pn + 1’.  I don't 
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understand why it's natural to choose that”. Another participant from the Interview 

Group did not seem to appreciate the distinction between the motivation contained in 

the “between levels” and the justifications present in the lower levels of the proof, 

saying, “if you want to make levels, then why are you having this between levels 

thing?  Can't you just put it in a level?  Isn't that the whole point?” One participant 

from Pilot Group A made a similar criticism, claiming that the structured Triadic 

Primes proof “included things it just didn’t need”, citing the between levels because 

these make the argument “sound like a story, not a proof”. This suggests that this 

participant (and perhaps others) do not view providing motivation for where the proof 

idea came from as appropriate to include in a proof, suggesting that these types of 

students may need to refine their epistemological beliefs about the purposes of proof 

if they are to appreciate this aspect of structured proofs. 

 

2. 3. 3. Jumping around 

Five students in the Interview Group complained that the structured proofs 

“jumped around” too much. That is, that the proof was difficult to follow because 

ideas that were closely related in the proof appeared spatially far apart from one 

another: 

Interviewer: What did you think of the format? 

IG 1: I kind of like it because in a sense it’s kind of how I would break 
down proofs sometimes. Because when I do a proof, if I think of 
something, I’ll do a little scratch work over here and then more 
scratch work over here, and I had a sense that it was like that. But 
since there was just so much stuff and you had to keep going back 
and drawing arrows, that was the only confusing part […]  Just 
because someone says something is true doesn’t necessarily mean 
it’s true, so I kind of want to show for myself that it’s true, so that’s 
what it did. But just because the stuff was all over the place and there 
was like in three places like we support the claim in 2c, but by the 
time I got down here I forgot what 2c was, so I had to keep going 
back and drawing. [This participant drew arrows between the 
assertions in Level 1 and the sub-proofs in Level 2]. 

IG 3: But if you were to read it like that, like I did the first time, you're 
jumping around everywhere.  Because you're saying level two, but I 
don't really read level two because I see more text down here.  So I 
figure let me read this first [the rest of level 1].  But then it gets very 
confusing.  Because for example I read 2c, and I go back to 3a but 
then they're talking about the claim in 2b.  But I don't remember the 
claim in 2b, so I have to go back and read 2b properly.  But then I 
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have to remember how does this relate to what the goals were?  And 
go back here, and I'm going all over the place. 

The “jumping around” is a characteristic feature of structured proofs, but 

students’ comments reveal a drawback of this feature—specifically, participants have 

to keep several different ideas in their heads as they read these proofs, which likely 

puts a strain on their working memories. Comments of this type were made by 

students in the Pilot Groups as well; nine of the 12 Pilot Group students complained 

that the structured proofs jumped around. 

 

2. 4. Summary and discussion 

Three participants in the Interview Group appreciated the summary given in 

Level 1 of the structured proofs. However, our data suggest that these high-level 

summaries are most effective in cases where the participants are familiar with the 

proof techniques being employed. If the Level 1 summary presents ideas with which 

the students are not familiar, students might not gain insight from reading it. Indeed, 

some participants in our study indicated that they only understood Level 1 of the 

Triadic Proofs after reading Level 2 and Level 3.  

Two participants in the Interview Group liked how structured proofs provided 

the motivation behind the proof, but some participants in this study did not value this, 

in some cases because they did not understand the motivation upon reading it and in 

one case because they thought such motivation did not belong in a proof. While 

structured proofs arguably have the potential to transform students’ beliefs about the 

enterprise of proof (as suggested by Selden and Selden, 2008), students’ pre-

existing beliefs about what proofs should contain may initially inhibit their 

comprehension of these proofs. 

Most participants in the Interview Group, as well as both Pilot Groups, 

expressed frustration that structured proofs jumped around. It is not clear to us how 

structured proofs could be altered to address this issue, although perhaps this 

feature of the proof would be less prevalent in a lecture or after students gained 

experience reading structured proofs. In general, these findings should all be viewed 

tentatively given the small number of participants in the study and the fact that 

students had so little experience with reading structured proofs. 
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3. STUDY 2: QUANTITATIVE INTERNET STUDY 

 

3. 1. Research methods 

To obtain a large sample size, we conducted the quantitative study with 

mathematics majors using an internet-based instrument. The validity of this type of 

method has been discussed extensively in the research methods literature, with the 

conclusion that internet-based research is as valid as laboratory research—provided 

that appropriate safeguards are taken (e.g. Gosling et al., 2004; Reips, 2000). To 

deal with the common validity threats for this type of study, we employed the 

methodology of Inglis and Mejia-Ramos (2009) and discarded participants who 

showed evidence of having participated in the experiment more than once (we 

controlled for multiple submissions by recording participants’ IP addresses) or who 

revisited earlier pages in the study (we recorded the order in which each participant 

visited the pages in the experimental website).  

Participants. We recruited 300 mathematics undergraduate students from 50 

top-ranked mathematics departments in US universities. These students participated 

without payment and were recruited via an email from their departmental secretary. 

The email explained the purpose of the experiment and asked third and fourth year 

mathematics major/minor students to visit the experimental website if they wished to 

participate. Consequently, the student population for this study were advanced 

mathematics majors and minors from elite universities in the United States. 

Materials. All materials used for this study are presented in the Appendix. For 

the internet study we used the two proofs employed in the qualitative interview study 

(i.e. the Only Zero proof and the Triadic Primes proof)8. We note that, in the 

qualitative study, we found evidence that the Only Zero proof contained routine 

methods for students while the methods in the Triadic Primes proof were novel for 

undergraduate mathematics majors. For each proof, we designed a proof 

comprehension test consisting of four (for the Triadic Primes proof) or five (for the 

Only Zero proof) items. These items were refinements of those used in the qualitative 

study. 

                                                           
8
 Minor modifications were added to these proofs to clarify difficulties in interpretation that participants from 

the qualitative study had that were unrelated to the format of the proof. 
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Procedure. Depending upon their university, participants were either invited to 

read the Only Zero proof or the Triadic Primes proof. Once participants had loaded 

the experimental website, they were randomly assigned into one of three conditions: 

L, where participants were presented with the linear version of the proof; S(no desc), 

where participants were presented with the structured version of the proof, but with 

no description about the nature of structured proofs; and S(w desc), where 

participants were presented with the structured proof after reading a description of 

the nature and purpose of structured proofs. These descriptions are the same as 

those used in the qualitative interview study and are provided in Appendix C. 

After reading the proof, participants were asked, “How well do you feel you 

understand this proof?” A five-point Likert scale was used to record each participant’s 

reported level of understanding. Next, participants answered the corresponding set of 

comprehension questions. Each question appeared on a new screen and the order in 

which they were displayed was randomized for each participant. Participants were 

asked not to hit the “Back” button to review the proof or change their answers to any 

of the questions, and informed that if they did their data would not be considered for 

analysis. Before analyzing the data, we removed any participant that revisited pages 

while completing the study. Upon completion of the test, participants in either of the 

two structured conditions were asked to use a three-point Likert scale to report the 

extent to which they liked the format in which the proof had been presented. 

 

3. 2. Results 

3. 2. 1. Comprehension test 

Participants’ performance in the comprehension tests is presented in Table 2. 

We note that we found no statistically significant differences between the 

performance on the items between the S(no desc) and S(w desc) conditions and, 

surprisingly, the S(no desc) did better than the S(w desc) conditions on all but one of 

the items. Consequently, for the purposes of comparing the efficacy of structured 

proofs, we collapsed the S(no desc) and S(w desc) groups into a single Structured 

group. We note that the lack of difference between S(no desc) and S(w desc)  is 

inconsistent with the pilot data from Study 1, where we found students in the Pilot 
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Groups had difficulty understanding structured proofs because they were not given a 

description of them. It is possible that our assumption that this was a cause of 

difficulty for the Pilot Group was unfounded. 

Table 2: Percentage of students from each group of the quantitative study who correctly answer each assessment 

item.  

 

Only Zero proof 
 

      Justification Justification Application to 

Condition Summary  Transfer  Question 1 Question 2 Diagram   

Lin (N=67) 63%  61%  85%  85%  69% 

S(no Desc) (N=69) 70%  54%  90%  87%  78% 

S(w Desc) (N= 66) 83%  51%  86%  73%  77% 

 

Triadic Primes proof 
        Application to 

Condition Summary  Transfer  Justification  Examples   

Lin (N=33) 67%  45%  54%  91% 

S(no Desc) (N=32) 72%  44%  47%  65% 

S(w Desc) (N= 33) 75%  33%  33%  60% 

 

 

 
Collapsing across both structured conditions 

 

Only Zero proof 

      Justification Justification Application to 

Condition Summary  Transfer  Question 1 Question 2 Diagram   

Lin (N=67) 63%*  61%  85%  85%  69% 

Struct (N=135) 76%*  53%  88%  80%  78% 

 

Triadic Primes proof 

        Application to 

Condition Summary  Transfer  Justification  Examples   

Lin (N=33) 67%  45%  54%  91%* 

Struct (N=65) 74%  38%  40%  63%* 

  

*- Indicates a statistically significant difference between groups with p < .05 

 

 

The data indicate that the Structured Group performed better on the summary 

questions than the Linear Group did. For the Only Zero proof, the Structured group 

answered the summary question correctly 76% of the time as compared to 63% for 

the Linear group, a statistically significant difference (χ(1, 200)=4.095, p=.043)9. For 

the Triadic Primes proof, the Structured group also did better on the summary 

question, although this difference (74% for the Structured group compared to 67% for 

the Linear group) was not statistically significant (χ (1, 96)<1, p=.457). This data is 

consistent with the qualitative data from Study 1. Participants appeared to benefit 

from reading Level 1 of the structured Only Zero proof. However, participants showed 

                                                           
9
 For all statistical tests, the null hypothesis is that there is no difference between how the Structured and 

Linear Groups would perform on that specific assessment item. 
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a more modest benefit from reading Level 1 of the structured Triadic Primes proof. 

This is consistent with our hypothesis that students might gain understanding from 

reading a summary primarily when they are familiar with the ideas and techniques in 

this summary. 

The Structured Group did not perform better than the Linear Group for the 

other assessment items. In fact, for five of these seven assessment items, the Linear 

Group outperformed the Structured Group, although these differences were generally 

not statistically significant. The Linear group had a higher percentage of students 

who answered the transfer questions correctly for both the Only Zero (61% vs 53%) 

and Triadic Primes (45% vs 38%) proofs.  However, neither of these results were 

statistically significant (χ (1, 200)=1.341, p=0.247, χ (1, 96)<1, p=0.506). For the 

justification questions, we found effectively no difference between participants’ 

performance for the Only Zero proof. Averaging across the two justification 

questions, the Linear and Structured groups performed essentially the same (85% 

and 84% correct, respectively). For the Triadic Primes proof, the Linear group 

performed somewhat better than the Structured group on the justification question 

(54% vs. 40%), but this difference was not statistically significant (χ (1, 96)=1.872, 

p=0.173). Hence our results for these assessment items are inconclusive, but at least 

provide no evidence that structuring a proof improves students’ comprehension in 

these regards. 

On the Only Zero proof, the Structured group performed better than the Linear 

group in recognizing that the ideas in the argument would not be applicable to the 

function shown in the diagram (78% vs. 69%), although this difference was not 

statistically significant (χ (1, 200)=1.974, p=.160). However, for the Triadic Primes 

proof, the Linear group did much better on the question applying the ideas of the 

proof to a specific example (91% vs. 63%; Fisher exact test, p=.034). It is plausible 

that this result is partly due to the fact that once M is chosen in the Triadic Primes 

proof, the linear version of the proof essentially offers a step-by-step prescription for 

reaching a contradiction with this M. For the structured proof, this information is 

dispersed throughout the proof and more emphasis is given to overarching methods 

and the motivation for choosing the M. Reading a linear proof may help students with 
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these types of questions because the step-by-step procedure is made explicit. Of 

course, we would need to replicate this result with more proofs to test this conjecture. 

 

3. 2. 2. Participants’ subjective evaluation of structured proofs 

After completing the assessment items, participants who read a structured 

proof were asked if they had a favorable or unfavorable view of the proof format. 

Participants who did not receive the structured proof description tended to have an 

unfavorable opinion of the proofs (20 viewed the proof favorably, 37 unfavorably, 44 

neutrally), while those who did receive the description viewed the proof more 

positively (33 favorably, 21 unfavorably, 45 neutrally).  

Participants were also asked to rate how well they understood the proof on a 

scale of 1 through 5. Participants’ self-reported levels of understanding were similar 

across groups. For the Only Zero proof, the Linear Group, Structured with 

Descriptions, and Structured without Descriptions, participants said they understood 

the proof fully (i.e., provided a rating of 5) 72%, 75%, and 74% of the time 

respectively. For the Triadic Primes proofs, these percentages were 52%, 52%, and 

48%.  

 

4. DISCUSSION 

 

4. 1. Implications for structured proofs 

As Schoenfeld (2000) cautioned, questions such as “are structured proofs a 

useful pedagogical technique?” are impossible to answer in a single study. 

Therefore, it is important to situate these results carefully and to avoid drawing 

inappropriate conclusions. The central result from Study 2 was that structured proofs 

helped students identify a high-level summary of the proof, but there was no 

evidence that they improved students’ performance on assessment items related to 

justification, transfer, or applying the ideas of the proof to a specific example.  

There are several essential caveats that must be kept in mind when 

interpreting this result. First, we assessed specific aspects of proof comprehension 
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after students read a proof in a short period of time. There are numerous ways we 

could have changed the design of our studies; for instance, we could have presented 

the structured proofs in lectures instead of written text, or we could have assessed 

students’ appreciation of proof or their abilities to write proofs rather than their 

comprehension of proofs. We could also have looked at using linear and structured 

proofs in conjunction. Had we made any of these changes, the outcome for 

structured proofs may have been more favorable. Second, our study looked for 

immediate and short-term learning gains for structured proofs. This is perhaps not a 

realistic expectation since undergraduates have extensive experience with reading 

linear proofs but essentially no experience with reading structured proofs. It is 

possible that the benefits of structured proofs would be more apparent if students 

had more experience with proofs in this format or training on how these proofs should 

be read and constructed. Third, we did not differentiate between different types of 

advanced mathematics majors for the purposes of this study. It is possible that 

structured proofs may have been beneficial for particular groups of students (e.g., 

new math majors who have not grown accustomed to linear proofs). This would be 

an interesting topic for future research.  

These findings do suggest that simply changing the format of proof from the 

traditional linear proofs to structured proofs is not likely to substantially improve 

students’ comprehension of these proofs, at least not in the short term. We believe 

this has two implications. First, if students are to benefit from structured proofs, they 

will probably require different pedagogical and mathematical experiences than the 

relatively shallow description of structured proofs that we provided students in this 

study. In hindsight, this perhaps is obvious. However, we note that Leron’s (1983) 

article and the many articles endorsing structured proofs (e.g., Mamona-Downs & 

Downs, 2002; Selden & Selden, 2008) simply recommend the use of structured 

proofs as a way to improve instruction, but do not suggest specific instructional 

interventions that mathematics professors might use for structured proofs to be 

effective. The data for Study 1 suggests several such measures. One finding from 

Study 1 is that participants appreciated structured proofs more when they were 

familiar with the overarching method of the proof, as this allowed Level 1 of the proof 

to be accessible and serve as an organizing guide. This finding suggests that the 

potential benefit of structured proofs depends not only on the student or on the 
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content of the proof, but on the relationship between the two. Therefore we 

recommend that professors take care when presenting a summary of a proof (i.e. 

Level 1 of a structured proof), especially when the ideas in this summary are less 

familiar to students. When introducing novel and difficult methods, it perhaps would 

be better to first present these proofs linearly and only afterwards summarize the new 

methods. Second, it might be worthwhile for professors to discuss the 

epistemological role of proof with students in their lectures: proofs are not only meant 

to give conviction, but also to provide explanation, insight, and ways of reasoning. 

Doing so might help students better appreciate how the summary and between-levels 

sections of structured proofs illustrate and motivate the ideas of the proof. 

These results also underscore the lack of empirical evidence supporting the 

claim that structured proofs actually improve students’ comprehension, or benefit 

students in any other discernable way. We emphasize that our results certainly do 

not imply that structured proofs cannot be beneficial; indeed, perhaps assessing 

students’ proof comprehension of a structured proof with such limited experience with 

the format is an unfair test. However, the central results from Study 1 suggest that 

structured proofs may have some inherent weaknesses for student comprehension: 

primarily, students perceive these proofs as “jumping around”, making it difficult to 

follow the sub-arguments. Therefore, we would recommend that the field not take it 

as a priori that structured proofs improve comprehension (as some, such as Melis, 

1994, have done). Further, other studies have found that other promising alternative 

proof formats had a negative effect on student learning (e.g., Roy et al, 2009). It 

might be the case that students’ difficulties are not due to the presentation format, but 

rather, as Hanna (1990) suggests, to the content of the proof. In this case, proofs that 

employ explanatory arguments might be more comprehensible to students. Hence 

we recommend more research on the effectiveness of structured proofs before as 

advancing it as an effective pedagogical suggestion. 

 

4. 2. Research on alternative proof formats 

This research study failed to verify the effectiveness of a popular pedagogical 

suggestion in mathematics education. Consequently, we are not surprised that some 

view these findings as provocative. This article should not be read as a critique of 
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Leron’s (1983) original contribution, which made no research claims and successfully 

opened a conversation about proof presentation in mathematics teaching. Rather, it 

should be viewed as an initial attempt to address the questions of when and in what 

ways structured proofs might benefit students.  

We note that our presentations of these findings have generated a wide range 

of reactions from the mathematics education community. We believe that this is 

because the claim “structured proofs improve student learning in advanced 

mathematics” is not a simple assertion, but actually a wide range of claims. 

Mathematics educators have very different interpretations of what this claim means, 

including how structured proofs are used in the classroom and the goals of 

presenting proofs to students (e.g., proof comprehension vs. ability to construct 

proofs). As noted in the introduction, assessments for proof comprehension and 

research on proof alternatives are beginning to emerge (e.g., Malek & Movshovitz-

Hadar, 2011; Mejia-Ramos et al, 2012; Roy et al, 2009). An important first step to 

building a systematic research base in this area is clarifying exactly what it means for 

an alternative proof format to be effective. With this clarification, comparisons 

between alternative proof formats and traditional proofs, as well as comparisons 

between different alternative proof formats, can yield a research base that is both 

cumulative and generalizable. 
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Appendix A: Triadic Primes proof and questions (final version from quantitative internet study) 

 

We define a number as monadic if it can be represented as  for some integer j, and triadic if it can be 

represented as  for some integer k.  A triadic (monadic) prime refers to a number that is both triadic 

(monadic) and prime.  Note that every odd prime is either a monadic prime or a triadic prime. 

 

Claim.  There exist infinitely many triadic primes. 

Linear Proof: 

1. Consider a product of two monadic numbers: 

 

which is again monadic. 

2. Similarly, the product of any number of monadic numbers is monadic. 

3. Now, assume the theorem is false, so there are only finitely many triadic primes, say . 

4. Let , where . 

5.  do not divide M as they leave a remainder of 3, and 3 does not divide M as it does not 

divide . 

6. We conclude that no triadic prime divides M. 

7. Also, 2 does not divide M since M is odd. 

8. Thus all of M’s prime factors are monadic, hence M itself must be monadic. 

9. But M is clearly triadic, a contradiction. 

 

 

 

Structured Proof: 

Level 1.  Suppose the theorem is false and let  be all the triadic primes.  We construct (in Level 2) 

a number M having the following properties: 

(a) M as well as all its factors are different from ; 

(b) M has a triadic prime factor. 

These two properties clearly produce a contradiction, as we get a triadic prime which is not one of 

.  Thus, the theorem is proved. 

Between Levels: How shall we define M?  It is natural to try , which meets requirement 

(a) but not (b).  In fact, since M itself may turn out to be prime, it must be triadic to meet requirement (b).  A 

natural second guess is .  However, since , M is divisible by 3, in violation of 

(a).  This ‘bug’ is easy to fix: simply eliminate 3 (i.e. ) from the product in our definition of M. 

 

Level 2.  Let .  M is clearly triadic.  We show that M satisfies the two requirements from 

Level 1. 

Level 2a.  Requirement (a) means that no  should divide M.  Indeed,  do not divide M as they 

leave a remainder of 3, and 3 does not divide M as it does not divide . 

Level 2b.  As for requirement (b), suppose on the contrary that all of M’s prime factors were monadic.  Then M, 

as a product of monadic numbers, would itself be monadic (Lemma, Level 3), which is a contradiction.   

Level 3. Lemma: The product of monadic numbers is again a monadic number.   

4 1j 

4 3k 

(4 1)(4 1) 4 4 4 4 1 4(4 ) 1,j k j k j k jk j k         

1 2, ,..., np p p

24 3nM p p  1 3p 

2 3, ..., np p p

24 np p

1 2, ,..., np p p

1 2, ,..., np p p

1 2, ,..., np p p

1 24 1nM p p p 

1 24 3nM p p p  1 3p 

1p

24 3nM p p 

ip 2 3, ..., np p p

24 np p
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Consider a product of two monadic numbers: 

 

which is again monadic.  Similarly, the product of any number of monadic numbers is monadic. 

 

 

Questions: 

 

Summary 

Which of the following is a better summary of this proof, A or B? 

A. It lists all triadic primes, then uses this finite list of triadic primes to obtain a contradiction by 

constructing a number that is triadic but has no triadic prime factors. 

B. It lets , where .  2 does not divide M because M is odd.   does not 

divide M because it leaves a remainder of 3.  This produces a contradiction. 

C. I don’t know which summary would be better. 

Transfer 

If one were to adapt the proof to show that there are infinitely many primes of the form , what 

would be an appropriate definition for M?  Assume first that there are finitely many primes of this form, say 

, with . 

Justification 

How was the conclusion that “the product of any number of monadic numbers is monadic” used in the 

proof? 

A. It was used to show that no triadic prime can divide M. 

B. It was used to show that M must be monadic. 

C. None of the above. 

D. I don’t know. 

 

Illustration with examples/diagrams 

Supposing  3, 7, 11, and 19 are the only triadic primes, which of the following illustrates the main steps of 

the proof?  

A. Let .  7, 11, and 19 do not divide M since they leave a remainder of 3, and 

3 does not divide M since it does not divide .  Thus, M  has only monadic factors and 

is monadic. 

B. Let .  Then the prime factors of M are 5 and 1171.  5 is monadic 

and 1171 is triadic.  Thus, M is triadic. 

C. Neither of the above illustrates the main steps of the proof. 

D. I don’t know. 

 

  

(4 1)(4 1) 4 4 4 4 1 4(4 ) 1,j k j k j k jk j k         

24 3nM p p  3ip  ip

6 5j 

1 2, ,..., np p p
1 2 ... np p p  

4 7 11 19 3M     

4 7 11 19  

4 7 11 19 3 5855M      
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Appendix B: Only Zero proofs and questions (final version from quantitative internet study) 

 

Claim.  

The equation  has no nonzero solutions. 

 

Linear Proof:  

1. Let .  Solutions of  precisely correspond to solutions of 

. 

2. Suppose the claim is false.  Then  has a nonzero solution s; that is,  and 

. 

3. . 

4. Since  and  for all real numbers x,  for all real numbers 

x. 

5. Clearly , so  is a solution of .   

6. Since  and , by Rolle’s theorem, there is a c between 0 and s such that 

. 

7. However, this is a contradiction because  for all x. 

 

Note: Rolle’s theorem states that if a differentiable function f has the property that , 

then there is a c such that and . 

 

 

 

 

Structured Proof: 

 

Level 1. We define . Solutions of  precisely correspond to 

solutions of  . Assume the claim is false: then f(x) = 0 has a nonzero solution.  We 

show (in level 2): 

  for all x. 

  for and  imply that there is a number c for which . 

Together, these conclusions clearly produce a contradiction, so the claim is proved. 

 

Level 2. 

2a. .  Using algebra (in level 3a), we show this expression is always 

positive.  

2b. Suppose  and .  Since  (level 3b), this implies there is a c such that 

, contradicting the fact that for all x, which was established in level 2a. (The details 

are given in level 3c). 

 

Level 3. 

3a. We support the claim in level 2a as follows: 

3 25 3 sinx x x x  

  3 2  3 5 sinf x x x x x      0f x 

3 25 3 sinx x x x  

  0f x  0s 

  0f s 

     
22 2' 3 6 5 cos 3 – 2 1 2 – cos 3 –1 2 – cosf x x x x x x x x x        

 
2

3 1 0x   2 – cos 0x   ' 0f x 

   
23(0) 0 – 3 0 5 0 sin0 0f     0x    0f x 

   0f f s s 0

 ' 0f c 

 ' 0f x 

   f a f b

a c b   ' 0f c 

  3 2  3 5 sinf x x x x x      0f x 

3 25 3 sinx x x x  

 ' 0f x 

  0f s  0s  (0) 0f  '( ) 0f c 

  2' 3 6 5 cosf x x x x   

0s    0f s  (0) 0f 

 ' 0f c   ' 0f x 
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.  

Since  and  for all real numbers x,  for all real numbers x. 

3b. . 

3c. We support the claim in level 2b as follows: 

Rolle’s theorem states that if a differentiable function f has the property that , then there is a 

c such that and . In our case, we have . Hence there is a c 

between 0 and s such that .  

 

 

Questions 

 

Summary 

Which of the following is a better summary of this proof, A or B? 

A. . If there were a non-zero s for which , then there 

would be a point where . However  is always positive. Hence 0 is the only 

solution. 

B. Since , then  

. If s is a solution, . A non-zero solution would mean there is a 

c such that , which is a contradiction. 

C. I don’t know which summary would be better. 

 

Transfer 

Why is it not possible to use the ideas from the proof to show that the equation  has no nonzero 

solutions? 

A. To use Rolle’s theorem, the function  would need to be differentiable. 

B. There is a nonzero solution to this equation. 

C.  has critical points. 

D. None of the above. 

E. I don’t know. 

 

Justification 1 

Where was the fact that  used in this proof? 

I. It was used to show that that  for all real numbers x. 

II. It was used to show that , where , would imply a contradiction. 

A. It was used to show I but not II. 

B. It was used to show II but not I. 

C. It was used for both I and II. 

D. It was used for neither I and II.  

E. I don’t know. 

 

Justification 2 

How was the fact that  for all real numbers x used in this proof?  

A. It was used to show that . 

     
22 2' 3 6 5 cos 3 – 2 1 2 – cos 3 –1 2 – cosf x x x x x x x x x        

 
2

3 1 0x   2 – cos 0x   ' 0f x 

   
23(0) 0 – 3 0 5 0 sin0 0f    

   f a f b

a c b   ' 0f c  (0) ( ) 0f f s 

 ' 0f c 

  3 2  3 5 sinf x x x x x    ( ) 0f s 

 ' 0f x   'f x

  3 2  3 5 sinf x x x x x      2' 3 6 5 cosf x x x x    

 
2

3 –1 2 – cosx x   0f s 

 ' 0f c 

sinx x

  – sinf x x x

  – sinf x x x

 0 0f 

 ' 0f x 

  0f s  s 0

 ' 0f x 

( ) 0f s 
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B. It was used to show that solutions of  precisely correspond to solutions of 

. 

C. It was not used to show either A or B. 

D. I don’t know. 

 

 

Illustration with examples/diagrams 

The graph of g(x) is given below. Is it possible that the ideas of the proof could be used to show that the 

equation  has no nonzero solutions?  

 

 
A. Yes 

B. No 

C. I don’t know 

  

  0f x 

3 25 3 sinx x x x  

( ) 0g x 
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Appendix C: Description for reading structured proofs 

 

Recently a mathematician proposed a new way of presenting proofs to make them easier to understand. 

However this way of presenting proofs has not been tested with students. The purpose of this study is to see how 

students understand proofs written in this format. 

 

This format presents proofs in levels. Level 1, the top level, gives in very general terms a description of 

how the proof will proceed. Level 2 carries out the arguments described in Level 1. If there are some logical 

details or computations for some of the ideas in Level 2, these details may be pushed down until Level 3. 

 

The motivation behind this presentation is that the reader can gain a general sense of what the proof will 

do before seeing all the detailed arguments. 

 

In reading this type of proof, you may encounter a "between levels" section. In this section, ideas that 

will be used in later levels are introduced. This way, statements in the proof will be motivated and not appear to 

come out of nowhere. 

 

 


