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Abstract
Niels Bohr, around 1930, when he tried to describe some processes in quantum physics, created the term ‘complementarity’. Bohr believed 
in the general epistemological and metaphysical significance of this principle. Since then several authors have used this term to capture the 
essential aspects of the cognitive and epistemological development of scientific and mathematical concepts (Otte and Steinbring, 1977; Kuyk, 
1977; Otte, Keitel and Seeger, 1980; Otte, 1984, 1990, 1994; Douady, 1991; Sfard, 1991; Jahnke, 1992). However, what is complementarity? 
It is an idea or a concept! Being an idea, complementarity finds different expressions within different contexts. Mathematicians do not know 
what to do with ideas and they want definitions instead. In this article, we discuss different aspects of complementarity trying to clear the matter.
Keywords: Mathematics Education. Philosophy of Mathematics. Complementarity.

Resumo
Niels Bohr, em torno de 1930, quando tentava descrever alguns processos da física quântica, criou o termo “complementaridade”. Bohr 
acreditava na significância metafísica e epistemológica desse princípio. Desde então diversos autores têm utilizado esse termo para capturar 
os aspectos essenciais do desenvolvimento epistemológico e cognitivo de conceitos matemáticos e científicos (Otte and Steinbring, 1977; Kuyk, 
1977; Otte, Keitel and Seeger, 1980; Otte, 1984, 1990, 1994; Douady, 1991; Sfard, 1991; Jahnke, 1992). Todavia, o que é a complementaridade? 
É uma ideia ou um conceito!  Sendo uma ideia, a complementaridade revela diferentes expressões em diferentes contextos. Os matemáticos não 
sabem o que fazer com ideias e querem, em vez disso, definições. Neste artigo, discutimos diferentes aspectos da complementaridade tentando 
esclarecer o assunto. 
Palavras-chaves: Educação Matemática. Filosofia da Matemática. Complementaridade.
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1 Introduction

When being asked, how this concept came about, one has 
to answer in historical terms. We find the first philosophical 
expression of the idea of complementarity in Kant’s 
epistemology and in his assertion that all human knowledge 
“springs from two fundamental sources of the mind; the first is 
the capacity of receiving representations …, the second is the 
power of knowing an object through these representations …. 
Through the first, an object is given to us, through the second 
the object is thought in relation to that [given] representation. 
… Intuition and concepts constitute, therefore, the elements of 
all our knowledge” (Kant, 1787, p.74).

Kant’s philosophy is, as we know, the result of a 
thorough rumination and distillation of Newton’s scientific 
achievements and his philosophy expresses the intellectual 
spirit of these achievements. Kant wanted to unite necessity 
and objectivity of knowledge and took Newton`s science as 
the starting point of an epistemological analysis. For example, 
Newton’s observations about the origin of objective precision 
of mathematical natural philosophy (see preface of the first 
edition of his Mathematical Principles of Natural Philosophy) 

led Kant to understand that the source of knowledge is to be 
found in the constructive activity of the subject, implying 
in particular that this activity is objectively constrained. 
Constrained, not by what we think, or believe, but by the 
structures of space and time, by the laws that govern, let`s say, 
the possibilities of an engineer of symbolic constructions, for 
example.

Newton (1729, p. xvii) had written in the preface:
The ancients considered mechanics in a twofold 

respect; as rational, which proceeds accurately by 
demonstration, and practical. To practical mechanics all 
the manual arts belong, from which mechanics took its 
name. However, as artificers do not work with perfect 
accuracy, it happens that mechanics is so distinguished 
from geometry that what is perfectly accurate is called 
geometrical; what is less so, is called mechanical. 
However, the errors are not in the art, but in the artificers.

Now the perfect artificer is God, and in our thought 
experiments we can imagine, or imitate his perfection by 
acting on algebraic or geometrical diagrams. Such a diagram 
is established by the complementarity of icons and indices. 
And although iconicity represents the dominant character of 
mathematical diagrams, it is indexicality, what in particular 
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makes the semiotic approach unavoidable, because it shows 
that mathematical reasoning is contextual like all other 
reasoning. The relevant contexts are semiotical contexts.

2 The Intension-Extension Complementarity

In fact, it is sometimes claimed that it is with the notion of 
index “that Peirce is at once novel and fruitful” (Sebeok, 1995, 
p. 15). Peirce saw, Sebeok continues, “as no one before him 
had, that indication is a mode of signification as indispensable 
as it is irreducible”. So, we come back to the intensions and 
extensions of symbolic representations as the basis of the idea 
of complementarity.

In Otte (2003, p. 204) the following description of the 
notion of complementarity is giving by saying that by the 
occasion of a lecture given by H. Wiener in 1891, Hilbert 
made a remark, which contains the axiomatic standpoint in 
a nutshell: “It must be possible to replace in all geometric 
statements the words point, line, plane by table, chair, mug”. 
Hilbert’s remark is usually interpreted as expressing the 
tendency towards a de-ontologization of modern axiomatized 
mathematics. This is not so. To the contrary, mathematics 
distinguishes itself from logic exactly by the fact that it has 
objects. As implied by Gödel’s incompleteness theorem, all 
axiomatic descriptions must necessarily remain incomplete.

Any formal theory has various intended applications or 
non-isomorphic models, and what the axioms describe are 
concepts or classes of objects, rather than particular objects 
themselves. In this respect, mathematical axioms resemble 
natural laws. And like the latter, they have to be supplemented 
by an indication of the domain of objects to which they apply. 
A mathematical theory should this be conceived of as a pair 
consisting of a system of axioms, that is, a syntactic structure 
together with a set of models or intended applications.

Modern axiomatized theories become, on the one hand, 
intensional theories in the sense that the axioms as a set of 
postulates not only determine the intensions of the theoretical 
terms, but also constitute the extensions or referents. In 
Euclidean geometry, the objects about which the theory 
speaks seem to be given by intuition, and independently of the 
theory. In Hilbert’s geometry, the situation is quite different, 
as the above quotation shows. To answer questions such 
as, what is a point? or, what is a number? one provides the 
respective axiomatic descriptions of the relations or laws, 
which govern these entities. On the other hand, as implied by 
Gödel’s incompleteness theorem, all axiomatic descriptions 
must necessarily remain incomplete. And any formal theory 
has various intended applications or models.

We shall conclude that mathematical terms, the senses 
(or intensions) of which are given by the systems of axioms 
and law-like statements, can be (and are) used ‘attributively’ 
as well as ‘referentially’. That is, the terms occurring in the 
axioms of a theory can be regarded, on the one hand, as 
giving descriptions of their referents, to be applied to those 

and only those entities with reference to which they are true. 
On the other hand, the terms contained in the axioms or in 
mathematical discourse in general can be used ‘referentially’, 
too. In this case, we do not regard the expressions of the 
theory as referring to those objects, which satisfy the given 
denotation, but as saying something about objects fixed 
independently of the given description. In group theory, for 
example, one uses axiomatic presentations of groups together 
with group representations (in terms of linear transformations 
or in terms of permutations or whatever).

To illustrate the latter point let us discuss the following 
example. Suppose an English tourist visiting Amazonia sees a 
biggish animal near the shore of a lake and asks what kind of 
animal this is. He is told that what is seen is a Capivara. As 
the tourist cannot speak Brazilian Portuguese, this is only an 
indexical or referential designation, which leaves him without 
any representation for the moment. If he is offered, to relieve 
his frown, an anglicization in the form of ‘water hog’, his 
face lights up and he says ‘aha’, actually believing to have 
understood what it is, the fact being that he is able to link 
something meaningful with the words of ‘water’ and ‘hog’. 
This is thus a case of some kind of descriptive designation, 
which has the disadvantage, however, of creating false 
notions. For the Capivara is no swine at all, but a grass-eating 
rodent. The Amazonian is in the opposite situation, as for him 
the Indian name of Capivara has the meaning of ‘grass-eater’, 
while the designation ‘water hog’ tells him absolutely nothing.

Now such a referential use sometimes serves as the starting 
point of further observations if a motive or curiosity results. 
After some time, the tourist may observe some characteristics 
and habits of the Capivara, and then will be able to say, 
“Capivaras are good swimmers and divers”, or “the Capivara 
lives in family groups”, etc. Gradually, the use of the term 
changes and it is transformed into a description. And indeed, 
theories in statu nascendi are mainly used ‘referentially’ by 
their exponents as well as by their opponents, while having 
reached their zenith, they are used ‘attributively’, until a new 
theory emerges and ascends to its zenith, when the former 
theory is used ‘referentially’ again.

The interdependence of attributive versus referential uses 
of terms is much more prominent with respect to mathematical 
concepts than in empirical ones, because mathematical 
objects firstly do not exist independently of any representation 
and, secondly because their instrumental character is much 
more pronounced. In pure number theory, numbers and 
number relations are the objects of study, in most number-
theoretic propositions numbers occur as nouns, whereas in 
applied mathematics number terms are used predicatively 
or as adjectives. Numbers seem to have come into being as 
adjectives.

3 Periods of History of Mathematics

Following Pierre Boutroux (1920), in that same paper, 
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the history of mathematics since Antiquity is considered as 
divided into essentially three periods, which could roughly be 
indicated by the names:

Period 1: Plato/Euclid

Period 2: Descartes/Newton

Period 3: Bolzano/Cantor and Hilbert.

Boutroux sees the essential revolution or break to occur 
between Period 2 and Period 3, while classifying Period 1 and 
Period 2 as both dedicated to a synthetical ideal of mathematics, 
which is characterized by a pre-established harmony “entre le 
but et la méthode de la science mathématique, entre les objets 
que poursuit cette science et les procédés qui lui permettent 
d’atteindre ces objets” (Boutroux, 1920,  p.193).

But, as was said already, we have a change of the dominant 
rationality type occurring already during the Scientific 
Revolution of the 16th/17th centuries.

Plato’s geometrical cosmology had been designed in a 
bold and almost romantic spirit, no doubt about that. And 
what about Galilei and his claim that the Great Book of Nature 
is written in terms of geometrical figures? This rings definitely 
like Platonism, doesn’t!

Koyré (1943, p.400) writes: 
The name of Galileo Galilei is indissolubly linked 

with the scientific revolution of the sixteenth century, one 
of the profoundest, if not the most profound, revolution 
of human thought since the invention of the Cosmos 
by Greek thought: a revolution which implies a radical 
intellectual ‘mutation’, of which modern physical science 
is at once the expression and the fruit. This revolution is 
sometimes characterized, and at the same time explained, 
as a kind of spiritual upheaval, an utter transformation 
of the whole fundamental attitude of the human mind; 
the active life, the vita active, taking the place of the vita 
contemplativa, which until then had been considered 
its highest form. Modern man seeks the domination of 
nature, whereas medieval or ancient man attempted 
above all its contemplation.

Koyré (1943, p. 400) does not think that this picture is 
completely correct. He says: “Galileo did not learn his 
business from people who toiled in the arsenals and shipyards 
of Venice. Quite the contrary: he taught them theirs”.  And it 
is still true that experimentation formed an essential part of 
“modern science”.

Koyré (1943, p. 400) again: 
It is not experience, but experiment, which played - 

but only later - a great positive role. Experimentation is 
the methodical interrogation of nature, an interrogation, 
which presupposes and implies a language in which to 
formulate the questions, and a dictionary, which enables 
us to read and to interpret the answers. For Galileo, as 
we know well, it was in curves and circles and triangles, 
in mathematical or even more precisely, in geometrical 
language - not in the language of common sense or in 
that of pure symbols - that we must speak to Nature 
and receive her answers. Yet obviously, the choice of 
the language, the decision to employ it, could not be 
determined by the experience, which its use was to make 

possible. It had to come from other sources.

These words by Koyré could certainly be most 
appropriately interpreted, by saying that the opposition 
between mathematical speculation and cosmic order, which 
had dominated Plato’s philosophy, has been transformed 
and changed by projecting it onto a new reality, namely, 
reality, understood as objective human activity and practice. 
Kant’s emphasis on the importance of epistemology and his 
assertion that all human knowledge “springs from two main 
sources in the mind”, is an expression of these changes. The 
science and philosophy of Greek antiquity had been riddled 
by the dichotomy of the discrete and the continuous. Zenon’s 
paradoxes of motion are an expression of that fact.

These historical considerations and our reflections about 
the various styles of thinking dominating them brings the 
idea that the notion of complementarity could be somewhat 
to similar to what philosophers have called dialectics. So let 
us consider some paragraphs of Engels’ book “Dialectics 
of Nature”, which are about the very same historical 
developments. 

Engels  (1907, p. 15) writes: 

The philosophy of antiquity was primitive, 
spontaneously evolved materialism. As such, it was 
incapable of clearing up the relation between mind and 
matter. But the need to get clarity on this question led to 
the doctrine of a soul separable from the body, then to 
the assertion of the immortality of this soul, and finally 
to monotheism. The old materialism was therefore 
negated by idealism. But in the course of the further 
development of philosophy, idealism, too, became 
untenable and was negated by modern materialism. This 
modern materialism, the negation of the negation, is 
not the mere re-establishment of the old, but adds to the 
permanent foundations of this old materialism the whole 
thought-content of two thousand years of development of 
philosophy and natural science, as well as of the history 
of these two thousand years. It is no longer a philosophy 
at all, but simply a world outlook, which has to establish 
its validity and be applied not in a science of sciences 
standing apart, but in the real sciences. Philosophy is 
therefore ‘sibilated’ here, that is, ‘both overcome and 
preserved’; overcome as regards its form, and preserved 
as regards its real content’ (Chapter XIII.).

From Dialectics of Nature: “But what especially 
characterizes this period is the elaboration of a peculiar 
general outlook, in which the central point is the view of the 
absolute immutability of nature. In whatever way nature itself 
might have come into being, once present it remained as it was 
as long as it continued to exist. The planets and their satellites, 
once set in motion by the mysterious “first impulse”, circled 
on and on in their predestined ellipses for all eternity, or at 
any rate until the end of all things. The stars remained forever 
fixed and immovable in their places, keeping one another 
therein by universal gravitation.

The earth had persisted without alteration from all 
eternity, or, alternatively, from the first day of its creation. The 
“five continents” of the present day had always existed, and 
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essentially about Number. Therefore, mathematics should be 
arithmetized to begin with. All mathematics, says Russell, for 
example, “including analytical geometry, may be considered 
as consisting wholly of propositions about natural numbers” 
(Russell, 1967, 51).

Moreover, if the world should be mathematized it must 
be finished, static and discrete. Thence Pythagoras dream of 
arithmetizing it. Splenger, in expressed these desires:

In number, as the sign of the completed and limited, 
is therefore contained the nature of all reality, that has 
become recognized and limited at the same time, as 
Pythagoras or who it was otherwise, realized with 
innermost certainty as a result of a great, quite religious 
intuition (Splenger, 1918, p. 110).

One of the most important discoveries of the Pythagorean 
School is without doubt that of the incommensurability of the 
side and the diagonal of the square. And this implied the failure 
of arithmetization and was a rejection of the Pythagorean view 
that the realm of number provides a model or an image of the 
world. This failure to establish number, as the basic element 
of the Universe was disastrous.

However, it seems that Plato had changed the program 
replacing arithmetic by geometry as the realm, which provides 
the basic elements of real ontology. If the square root of two or 
three cannot be rendered rationally in terms of number, than 
one might accept their geometric representations and try to 
understand the building blocks of the universe in these terms. 
Karl Popper has in particular contributed to such a view. 

He writes: 

The discovery of the irrationality of the square 
root of two destroyed the Pythagorean program of 
arithmetizing geometry and with it, it appears the vitality 
of the Pythagorean order itself. … It appears that the 
breakdown of the Pythagorean program, i.e. of the 
arithmetical method of geometry, led to the development 
of the axiomatic method of Euclid, that is to say of a new 
method, which has, on the one side, to rescue, what can 
be rescued (including the method of rational proof) and, 
on the other side, accept the irreducibility of geometry to 
arithmetic (Popper, 1945, p. 15). 

Since the 17th century, the aporias of ancient thought have 
gradually been replaced by complementarities. Facts and 
theories become complementary elements of the system of 
human activity.

And think of the function concept, which was decisive, 
as much in the development of the new calculus, as to 
classical mechanics. While Galileo was primarily responsible 
for dismantling the Platonic - Ptolemaic cosmology, the 
creation of the corpuscular-mechanistic worldview was the 
achievement of a number of investigators, owing its final 
culmination to Newton. In this sense, it is right when claiming 
that the Scientific Revolution essentially consisted in raising 
mechanics to the level of philosophy. Newton’s approach to 
calculus rests firmly on the conception of continua as being 
generated by motion. And motion is mathematically modelled 
in terms of the mathematical function concept.

they had always had the same mountains, valleys, and rivers, 
the same climate, and the same flora and fauna, except in so 
far as change or cultivation had taken place at the hand of 
man. The species of plants and animals had been established 
once for all when they came into existence; like continually 
produced like, and it was already a good deal for Linnaeus to 
have conceded that possibly here and there new species could 
have arisen by crossing. In contrast to the history of humanity, 
which develops in time, there was ascribed to the history of 
nature only an unfolding in space. All change, all development 
in nature, was denied. Natural science, so revolutionary at the 
outset, suddenly found itself confronted by an out-and-out 
conservative nature in which even to-day everything was as 
it had been at the beginning and in which - to the end of the 
world or for all eternity - everything would remain as it had 
been since the beginning.

High as the natural science of the first half of the eighteenth 
century stood above Greek antiquity in knowledge and even 
in the sifting of its material, it stood just as deeply below 
Greek antiquity in the theoretical mastery of this material, in 
the general outlook on nature. For the Greek philosophers the 
world was essentially something that had emerged from chaos, 
something that had developed, that had come into being. For 
the natural scientists of the period that we are dealing with it 
was something ossified, something immutable, and for most 
of them something that had been created at one stroke.

Science was still deeply enmeshed in theology. 
Everywhere it sought and found its ultimate resort in an 
impulse from outside that was not to be explained from nature 
itself. Even if attraction, by Newton pompously baptized 
as “universal gravitation”, was conceived as an essential 
property of matter, whence comes the unexplained tangential 
force, which first gives rise to the orbits of the planets? How 
did the innumerable varieties of animals and plants arise? And 
how, above all, did man arise, since after all it was certain that 
he was not present from all eternity? To such questions natural 
science very frequently are answered by making the creator 
of all things responsible. Copernicus, at the beginning of the 
period, writes a letter renouncing theology; Newton closes the 
period with the postulate of a divine first impulse. The highest 
general idea to which this natural science attained was that of 
the purposiveness of the arrangements of nature, the shallow 
teleology of Wolff, according to which cats were created to 
eat mice, mice to be eaten by cats, and the whole of nature to 
testify to the wisdom of the creator”.

Therefore, during the 19th/20th centuries the relationship 
between mathematics and science, on the one side, and 
philosophy, on the other side, had to change and to make 
progress. Therefrom the new interest in Plato resulted, such 
that Whitehead could say “The safest general characterization 
of the European philosophical tradition is that it consists of a 
series of footnotes to Plato” (Whitehead, 1929, p.15).

Mathematics is essentially a science of the identical and 
the different, or about equality and difference. Thus, it is 
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always holds a lead, however small. Zeno’s problem is a 
paradox of movement. In physics, movements are understood 
as continuous functions of time in three-dimensional space 
g(t) = (x(t), y(t), z(t)), with t as a time parameter: “We talk of 
a movement when the (space) coordinates of the body change 
over the course of time”, states a randomly selected physics 
textbook.

And the continuous function, as a model of movement, 
actually very clearly reflects the double character of this 
concept: On the one hand, it contains discrete aspects, such as 
it permits me to calculate single values, when it is written as a 
formula. On the other hand, it emphasizes continuous aspects, 
for example, in the illustration of the functional graph that 
gives a qualitative overall idea of the function (= movement). 
The function is simultaneously both qualitative and 
quantitative, knowledge (overall idea) and tool (calculation 
formula) in one.

Zeno wanted to know the movement perceived and 
“measured” at given positions, at points, whose distances 
converge toward zero.

x0 = 0   and   xn+1  = (xn /10) + 100 yard   for n = 0, 1 ....

He disguises this procedure for “measuring” movement in 
the above story: When Achilles is at xn, the tortoise is already 
at xn+1 > xn! Here he exposes his audience to the fallacy that 
places the one-sided discrete view of movement, in contrast 
to knowledge about the continuous course together with the 
knowledge that the slower one must finally be overtaken by the 
faster despite such a large start. If we accept this exclusively 
discrete approach, we agree that Achilles must first reach all 
the points that the tortoise has already reached (by which 
the tortoise is naturally always a little bit further in front!). 
Therefore, what we are actually saying is that Achilles can 
reach only these points, that these are quasi the only positions 
that he can reach, or at least, the only ones that determine his 
position. We quasi encapsulate Achilles’ movement within 
that of the tortoise; we chain it to the latter.

We have to symmetrize our perspective by adopting a 
relational point of view. Precisely speaking, the task is as 
follows: Achilles runs ten times as fast as the tortoise, though 
the tortoise has one hundred yard start. For each of the stages, 
x (x > 0), covered by Achilles, the tortoise has crawled the 
distance f(x) = (x/10) + 100 yard.

This function as a model of the movement (or rather the 
relative movement of the tortoise to the “standing” position of 
Achilles) now enables us to reproduce the paradox on a new 
level because of its double character: The continuous aspect 
of the movement does not contradict the discrete perspective. 
It is the representation in terms of the function concept that, 
first of all, enables us to free Achilles’ movement from the 
one-sided fixation on the series of distinct points xn (n = 0, 1 
.... ), and also to see the movement as a whole.

The relative movement of Achilles and the tortoise is a 
linear function, as both movements are uniform: f(x) = ax + 

To understand a mathematical function means to 
understand the complementarity of formula and relation, of 
algorithm and natural law. In the mathematics of the 17th/18th 
centuries, discontinuous functions could not be represented, 
because a function was an analytical law. A geometrical 
curve, on the other hand, was called continuous if it could be 
represented by an analytical function (Euler, 1748). But this 
characterization proved to be incoherent.

Cauchy, after having demonstrated the inconsistency 
of these efforts (Grattan-Guinness, 1970), revised the 
whole approach of the principle of continuity, transforming 
mathematics into extensional theory. A function in Cauchy’s 
or Dirichlet’s sense can be seen as an equivalence class of 
analytic expressions or formulae, where the equivalence 
relation is based on the axiom of extensionality. This switch 
from an intensional to an extensional view has made it possible 
since Cauchy to single out sets of functions by certain of 
their properties, and in general to reason about them, without 
representing them explicitly (Cauchy, 1821, p.99-100).

This kind of conceptual reasoning characterizes, 
according to Boutroux, the third period in the evolution of 
mathematics, the period of complementarity proper, which 
begins around 1800. At the beginning of the 19th century, 
pure mathematics emerges, based on proof analysis and of 
the creation of ever more abstract concepts, and the harmony 
between means and objects of mathematical activity begins to 
collapse. Pure mathematics is the child of an explosive growth 
of mathematical activity that may be briefly characterized by 
stating that a great number of connections between apparently 
very different results and problems were detected, for the first 
time in the history of mathematics. Descartes’ discovery of 
analytical geometry already initiated a process that indeed 
became dominant from the early nineteenth century only.

4 Zeno’s Paradox

The classical example that clearly demonstrates the 
complementarity of the algorithmic and the relational, or 
of the discrete and the continuous in the function concept 
derives from Zeno’s paradox of Achilles and the tortoise. This 
paradox has become so prominent because it seems to be a 
striking expression of the classical Platonic rationality type 
and its difficulties.

One can find this paradox in any school textbook of 
mathematics. It is usually paraphrased as follows:

Suppose Achilles runs ten times as fast as the tortoise and 
gives him a hundred yards start. To win the race Achilles must 
first make up for his initial handicap by running a hundred 
yards; but when he has done this and has reached the point 
where the tortoise started, the animal has had time to advance 
ten yards. While Achilles runs these ten yards, the tortoise 
1gets one yard ahead; when Achilles has run this yard, the 
tortoise is a tenth of a yard ahead; and so on, without end. 
Achilles never catches the tortoise, because the tortoise 
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b (i.e., when Achilles reaches x, the tortoise is at f(x)). The 
problem: “At what point does Achilles really catch up with 
the tortoise?” is now: “What is the fixed point of f(x)?” The 
fixed point of f(x) can be calculated simply as a function of 
the constants a and b: x = f(x) = ax + b. We seemingly have 
solved the problem by taking a relational point of view, which 
means, by adopting a “world view” which provides objects 
and relations between objects with an equal ontological status.

This essentially makes up for what has been called a 
transition from thinking about objects to a complementary 
relational thinking. This transition took place at the end of the 
18th century only. In what sense is this a solution? The paradox 
of the movement leads to a complementarity in the concept of 
“function”!

However, this complementarity requires a genetic and 
dynamical view on mathematics, not as a fixed logical edifice, 
but as an evolving and growing body of knowledge and 
activity.
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