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ABSTRACT 

The aim of the present article is to review contributions from neuroscience to a 

better understanding of mathematical learning processes. A review of the theoretical 

frames and methodological assumptions from the developmental cognitive 

neuropsychology is firstly introduced. Then we analyzed the evidences from the 

neuroscientific investigation of typical and atypical development of mathematical 

abilities and the implications of those evidences in the context of mathematics 

education. Finally we conclude that the interactions of neuroscience and 

mathematics education may benefit all students, by thinking of the cognitive 

mechanism underlying the development of mathematical abilities. 
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INTRODUCTION 

 

Interest in collaboration between neuroscience and education is growing 

(Chinn & Ashcraft, 2007; Posner & Rothbart, 2007). Potentially, both areas benefit 

from the partnership. A neuroscientifically informed pedagogical approach might help 

improve teaching of both typically developing children as well as those with learning 

difficulties. Interdisciplinary work between educators and neuroscientists may result 

in a broader and more reliable diagnosis of the students’ individual differences in 

terms of cognitive assets and deficits, contributing to develop evidence-based 

intervention strategies. From the neuroscientists’ perspective the dialogue with 

education may constitute an opportunity to balance inventory, contrasting and 

assessing assumptions, methods and validity of empirical results. In the process of 

accommodation to the theoretical and practical contributions and needs of educators, 

neuroscientists main gain insights and opportunities of renewal for their own field.  

The modernization of society demands a larger coverage of middle and higher 

education and better quality teaching (Newsom & Richerson, 2008). The educational 

level of the population has an impact on the form of human, social and mental 

resources (Barber, 2002; Cooper, Field, Goswami, Jenkins, & Sahakian, 2010; 

Fukuyama, 1996, 1999), as well as on quality of life (Felder-Puig, Baumgartner, Topf, 

Gadner & Formann, 2008). 

Perhaps the most important aspect to integrate neuroscience and education is 

to think about the cognitive mechanisms underlying learning processes (Coch & 

Ansari, 2009). So the aim of the present article is to present contributions from 

neuroscience to a better understanding of mathematical learning processes. Firstly, 

we will start reviewing the theoretical frames and methodological assumptions typical 

of neuroscience. It is necessary to clear from the beginning, that the field of 

neuroscience is extremely heterogeneous, and that we are adopting a more specific 

perspective, that of developmental cognitive neuropsychology (Temple, 1997). 

Secondly, we will present evidences from the neurocientific investigation of typical 

and atypical development of mathematical abilities and analyze the potential 

applications of those evidences to basic arithmetics education. Finally psychosocial 

aspects of mathematical education will be briefly discussed.  
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DEVELOPMENTAL COGNITIVE NEUROPSYCHOLOGY 

 

Clinical neuropsychological evidence suggests that the brain may be 

characterized by a modular architecture. That is, the cognitive system is built from a 

sample of evolved processing devices, which are both integrated and partially 

autonomous and functionally segregated. Inherent biological interindividual variation 

or pathogenic processes may compromise the host of modular systems both globally, 

as in mental retardation, or isolated, as in specific learning disabilities (Anderson, 

2001). Developmental cognitive neuropsychology does not deny either the complex 

and integrative nature of the brain or the existence of an important environmental 

influence on the maturation of cognitive systems, but assumes that analysis of 

neuropsychological dissociations in performance of brain-injured or brain–

dysfunctional individuals constitutes a valid approach to identify the semi-

autonomous components that constitute the system (Shallice, 1988; Temple, 1997).   

The idea is to analyze the differing patterns of lost and preserved 

psychological processes arising from distinct forms of brain damage or dysfunction in 

search for double dissociations (Shallice, 1988; Temple, 1997). Some individuals, for 

example, are identified as developmental dyslexics, because they present with 

specific deficits in the phonological recoding processes underlying reading learning, 

while their visuospatial, visuoconstructional, arithmetical and socio-cognitive 

inferential abilities may be intact (Galaburda, LoTurco, Ramus, Fitch & Rosen, 2006). 

In another group of individuals, phonological recoding abilities related to literacy 

acquisition may be spared, but important difficulties are experienced with 

visuospatial, visuoconstructional, arithmetical and socio-cognitive performance, being 

diagnosed with the so called nonverbal learning disability (NLD, Davis & Broitman, 

2011; Rourke, 1989; Volden, 2004). The complementary profiles of spared and 

compromised neuropsychological processes observed in developmental dyslexia and 

NLD may be referred to as a double dissociation, being interpreted as evidence for a 

modular organization of the brain. 

Obviously, the modular organization of the brain, as observed in adults, is the 

outcome of a long epigenetic process, in which, synaptic plasticity, environmental 

structure, and system dynamics all work as powerful influences. But, it is argued, the 
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double dissociation between distinct profiles of “basic phonological processing” and 

“nonverbal” learning disabilities (Rourke, 1989) indicates that the initial system state 

may not be characterized as lacking structure, being more adequately described by 

differential learning dispositions regarding proclivity to acquire certain abilities and 

not others. The genetic nature of learning disabilities (Galaburda et al., 2006; Shalev 

et al., 2001) is consistent with the hypothesis that minimal differences in the initial 

conditions of a complex system may be amplified and lead to distinct outcomes. 

Persistence of learning disorders across the lifespan demonstrates that 

neuroplastic processes know some important scope limitations (Anderson, Catroppa, 

Morse, Haritou & Rosenfeld, 2005). Disorders of synaptic neuroplastic mechanisms 

may build the core mechanism of developmental/learning neurogenetic disabilities, 

impairing learning and development in more or less specific domains (Johnston, 

2003). From the specificity of the impairments, it is possible to suppose that some 

individuals may exhibit unique learning strategies or styles, which need to be 

considered in the educational process (Chinn & Ashcroft, 2007). For example, 

individuals with the NLD syndrome lack intuition and do not benefit so much from the 

social interactive context as their peers (Davis & Broitman, 2011). 

Evolutionary psychology has an important theoretical argument for mental 

modularity. If the cognitive system is the outcome of an ancestral evolutionary 

process by natural and sexual selection, then it must be modularly organized, as it is 

difficult to conceive how a general solving device could be selected (Tooby & 

Cosmides, 1995). In the modular-evolutionary perspective, each cognitive process 

represents an adaptation to a specific problem found by our ancestors in the 

environment in which our species evolved.  

Another source of evidence in favor of modularity comes from recent 

investigation on mathematical models of topology, which are known as small world 

models and graph theory (Bassett & Bullmore, 2006). This line of investigation shows 

that a certain degree of modularity in complex systems is necessary to allow neural 

specialization. Moreover, complex systems with a modular structure do not react to 

evolutionary influences to the same extent and are not changed at the same speed. 

As a consequence, efficient cognitive subsystems can preserve their structure while 

less efficient subsystems may be changed faster depending on environmental 
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pressure till they reach a higher degree of efficiency. Meunier, Achard, Morcom and 

Bullmore (2009a), for instance, have shown with graph models that aging has a 

much larger impact on the structure of fronto-parietal connections than on the 

functional connectivity of visual occipital structures, which remain largely unchanged 

across adult life. Graph models are also useful to distinguish between nodes 

presenting high intra-modular connectivity from other regions presenting high inter-

modular connectivity (Meunier et al., 2009b). While the first type of node is 

particularly important for integrating information within a given module and to 

increase the efficiency of a specific cognitive function such as vision or reading, the 

last type of node integrates high-level information from different cognitive modules. 

As stated by Meunier et al. (2009b), a modular structure equips cognitive systems 

with both the stability and flexibility typically associated with well-adapted complex 

systems.  

Modularity also helps to understand why not every animal species learns 

equally easy or well any single considered behavior (Garcia, Kimeldorf & Koelling, 

1955); the system’s initial state must then be accounted as consisting of several 

learning dispositions, which increasingly differentiate themselves during ontogenesis. 

Preparedness or initial dispositions may be characterized as a set of innate intuitions, 

which allow adaptation to distinct characteristic behavior of most species, as well as 

human social and cultural behavior (Geary, 2007; Spelke & Kinzler, 2007). The 

ensemble of primitive intuitions varies, but different formulations gravitate around a 

set of abilities related to psychosocial knowledge, of self and others, knowledge of 

living nature, as well as knowledge of physical phenomena such as space, motion, 

causation, and a rudimentary representation of continuous and discrete quantities 

(Geary, 2007; Spelke & Kinzler, 2007).  

In the domain of arithmetics, a distinction was proposed between biologically 

primary and secondary abilities (Geary, 2007). Primary abilities correspond to the 

primitive intuitions of number and arithmetical principles, which are spontaneously 

acquired by children in their interactions with the physical and social world, and 

which, ordinarily do not require more elaborate pedagogical interventions to be 

acquired. They are characterized as representing start-up tools with which arithmetic 

knowledge is built (Piazza, 2010). Secondary abilities, on the other hand, are 
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exemplified by cultural developments, such as the multiplication tables, the Arabic 

notation and algorithmic procedures. Cultural tools require an explicit educational 

intervention to be learned, besides training and effort to be mastered. The “natural” or 

spontaneous acquisition of cultural tools, by mere exposition, is considerably rarer. 

In the second part of this article we will review five different domains that 

neuroscientific research can contribute to better understand the typical and atypical 

development of mathematical learning processes: 1) approximate number system 

(ANS) and the development of the concept of number, 2) fact retrieval, 3) procedural 

knowledge, 4) conceptual knowledge and 5) emotional reaction to mathematics. The 

ANS is an evolutionary selected capacity to perceive and represent nonsymbolic 

numerical quantities (Feigenson, Dehaene & Spelke, 2004). Fact retrieval refers to 

simple arithmetic problems learned by heart such as multiplication tables (Dehaene 

et al., 2003). Procedural knowledge is the ensemble of heuristics and procedures 

employed to dismember complex arithmetic problems into its components with the 

aim of solving them (know-how). Procedures are ensembles of rules describing what 

to do when facing specific kinds of arithmetic problems such as simple binomials (a + 

b)². The set of transformations necessary for solving a problem are the core of 

procedural knowledge. In contrast, conceptual knowledge is the set of general logical 

principles ruling mathematics. Knowing that 22 + 75 = 97 helps solving the problem 

97 - 22 is a clear example of conceptual knowledge.  Finally, the emotional reaction 

to mathematics is one important predictor of successful mathematics learning. Math 

anxiety is a condition that may prejudice arithmetic learning (Krinzinger et al., 2009).  

 

ANS AND THE DEVELOPMENT OF THE CONCEPT OF NUMBER 

 

One of the most important breakthroughs was the discovery of the existence 

of a number sense, that is, a fundamental kind of intuition shared with other animals 

and operating since infancy to represent and process numerical magnitudes. 

(Dehaene, 1999). These foundational abilities are developed by human children in 

their natural environment and typically require minimal pedagogical intervention. 



Haase; Ferreira; Moura; Pinheiro-Chagas; Wood  

 

95 – v.5(2)-2012 

JIEEM – Jornal Internacional de Estudos em Educação Matemática 
IJSME – International Journal for Studies in Mathematics Education 

Other abilities, related to verbal and Arabic symbolic numerals require extensive 

teaching, years of practice and considerable cognitive effort to achieve mastery.  

The well-known experiments by Piaget in the first half of the XXth Century with 

quantity conservation suggested that children only acquired a concept of number as 

cardinality after 7 or 8 years of age (Piaget & Szeminska, 1975). A series of 

investigations in the last decades, however, using nonverbal experimental paradigms 

of habituation or anticipation, suggests that even infants are endowed with a 

rudimentary, nonverbal and approximate notion of numerosity. Results have shown 

that infants in their first weeks or months of life are able to discriminate the cardinality 

of small sets up to four elements (Starkey & Cooper, 1980).  

Wynn (1992) had demonstrated that infants under 5 months of age are able to 

conduct, in a nonsymbolic form, rudimentary operations of addition and subtraction. 

Subsequently, Xu and Spelke (2000) showed that infants could also approximately 

but reliably discriminate the cardinality of larger sets and that their response pattern 

respected the scalar variability property described by the Weber's law. Research 

showing that infants are able to discriminate small numerosities and also of 

anticipating results of simple arithmetic operations suggest that these abilities may 

have an innate basis. 

Discovery of infants’ numerical and arithmetic abilities elicited a vivid debate in 

the developmental literature, concerning the nature of the involved representations, 

e. g., if they are specifically numerical and discrete, or if they are continuous and 

shared with other magnitude representations systems (see Rousselle, 2005, for a 

review). One of the main critiques pertains to the lack of experimental control of all 

possible perceptual dimensions which can confound performance (Mix, Huttenlocher 

& Levine, 2002).  

In a carefully designed study, however, Feigenson, Carey and Spelke (2002) 

contradicted this interpretation showing that infants could better discriminate 

numerosity than surface. Another experiment, conducted by Wynn, Bloom e Chiang 

(2002) contributed to firmly establish the notion that 5-month-old babies can 

discriminate the numerosity of sets. Stimuli were sets of moving points. In the 

habituation phase, infants saw two sets of three points each. In the experimental 

phase, two kinds of stimuli were shown, both with the same total amount of eight 
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points: two sets of four elements or four sets of two elements. Infants kept their gaze 

fixated on the condition with four sets for more time, demonstrating that they were 

attending to the numerosity of sets. 

Nonetheless it remains possible that early magnitude representations are not 

specifically numeric or discrete in nature, being continuous and shared with other 

magnitude representation systems in the parietal lobes, such as time and space 

(Walsh, 2003). According to this perspective, the concept of cardinality and intuitions 

on the principles underlying arithmetic operations are acquired epigenetically. One 

possible mediator between the ANS and the full-fledged concept of cardinality could 

be fostered by counting mechanisms recruiting the verbal labels, finger-pointing and 

finger-counting procedures under visual attentional control (Lecointre, Lépine & 

Camos, 2005). 

Consistent experiments conducted with and humans adults demonstrated that 

discrete numerical processing also obeys traditional psychophysical laws, such as 

the ones described by Weber and Fechner in the XIXth Century. Moyer and Landauer 

(1967) observed, for example, that the responses to comparison of the magnitudes of 

two Arabic numbers are slower and more prone to error when the numerical distance 

between the compared numbers is smaller, than when this difference is larger 

(distance effect; see Sekuler & Mierkiewicz, 1977, for a description of the distance 

effect in children). This proportionality or scalar variability between magnitude 

differences and their discriminability in several domains was discovered by Weber to 

be a constant. Number processing in animals and humans accords also to another 

psychophysical regularity described by Fechner (Dehaene, 2003), that is, is 

progressively slower and error prone as the magnitude of the stimuli increases, and 

the function which best fit to the data is logarithmic (size effect). 

Evidence for the ANS led Dehaene (1992) to formulate the triple code model, 

the most widespread contemporary used model of number representation, 

processing, and calculation (see Figure 1). According to the triple code model, 

number processing and arithmetic operations may be conducted on three systems of 

mental representations: the ANS and two symbolic systems, which allow for precise 

numerical representations of magnitude. Numerical symbolic systems consist of the 

verbal numerals (in phonological or orthographic form) and visual Arabic digits. 
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Figure 1 – Dehaene’s triple code model. 

 

A series of neuropsychological studies lead to the formulation of the neural 

underpinnings of the triple code model (Dehaene & Cohen, 1995), which were 

subsequently confirmed by neuroimaging research (Dehaene, Piazza, Pinel & 

Cohen, 2003). Processing of verbal numerals is implemented by perisylvian regions 

of the left hemisphere, most notably the region around the angular gyrus. Processing 

of Arabic numerals is postulated to depend bilaterally on the region of the fusiform 

gyrus, the occipito-temporal ventrolateral border. Bilaterally situated neuronal 

networks around the horizontal portion of the intraparietal sulcus may constitute the 

neuronal substrate the ANS (Walsh, 2003). Strategic aspects of number processing 

depend on the dorsomedial and dorsolateral regions of the prefrontal cortex and 

related circuits. Proceduralization of arithmetic facts takes place via interactions 

between circuits comprising the before mentioned regions and subcortical basal 

ganglia structures, resulting in a specific domain of semantic memory, represented in 
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widely distributed form in several cortical areas, but having the angular gyrus as a 

kind of hub or portal of access (Zamarian, Ischebeck, & Delazer, 2009). 

Taken together these studies demonstrate that humans have an innate ANS 

which serves as a foundational capacity to the development of the concept of 

number.  

 

FACT RETRIEVAL AND LEARNING BY HEART 

 

Sometimes the contribution of neuroscience comes in a counterintuitive way. 

One very clear example is learning by heart. The more progressive the educational 

attitude, the more learning by heart is despised. Learning the general concept is seen 

as much more valuable than mechanically repeating contents (see Bryant & Nunes, 

2011, for a contemporary reformulation of the constructivistic approach to 

mathematics). Traditionally, constructivistic approaches in education favor learning 

over fluency acquisition, which sometimes leads to curricular distortions, insofar as 

learning by heart is regarded as old fashioned and inefficient, being relegated  to a 

secondary position in curriculum (Fuson, 2009). Students struggling with difficulties 

learning arithmetics are the ones most adversely affected by such biases. 

Interestingly, there seems to be important exceptions to this general rule with regard 

to mathematics: multiplication tables.  

The cognitive mechanisms responsible for storing and correctly retrieving 

multiplication facts are not sensitive to conceptual learning or learning transfer. To 

the contrary, these mechanisms are specialized in storing and retrieving exactly the 

material learned. The efficiency with which these mechanisms work depends on the 

degree of automaticity to which memory traces can be retrieved. Moreover, retrieval 

efficiency depends mainly on the material being learned and show therefore no effect 

of generalization. For this reason, learning very well the multiplication of 3 will not 

help learning the table of 7 or 8.  

The brain regions related to learning and retrieval of multiplication facts differ 

from the regions typically involved in magnitude estimation and calculation. 

Neuropsychological evidence so far is largely compatible with the proposed 
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structural-functional correlations assumed by the triple code model, such as double-

dissociations in performance observed in several case studies (Dehaene & Cohen, 

1997; Delazer & Benke, 1997; Delazer, Karner, Zamarian, Donnemiller & Benke, 

2006;  Lerner, Dehaene, Spelke & Cohen, 2003; Varley, Klessinger, Romanowski, & 

Siegal, 2005). Several patients presented with specific impairments in the processing 

of verbal numerals, preserving performance in tasks related to nonsymbolic 

magnitudes, such as magnitude comparison of visually presented sets of points. And, 

vice-versa, other patients preserved performance on verbally mediated tasks, such 

as knowledge of multiplication tables, in the presence of impairments in their ability to 

estimate the cardinality of object sets. In general, verbal dysfunctions 

disproportionately disrupt addition and multiplication operations, while disruption of 

the ANS interferes with subtraction and approximate calculation. A broader review of 

neurofunctional and clinical aspects related to calculation disorders may be found in 

Willmes, 2008. Broadly speaking, localized lesions of the left hemisphere in the 

region of the angular gyrus cause acalculia by interfering with verbal mechanisms, 

while bilateral damage to parietal structures, generally in the context of 

developmental or degenerative diseases are a cause of malfunction of the ANS. 

Interestingly, learning by heart is important mainly for multiplication tables but 

not for any other basic arithmetic operation. Therefore, it is very important to practice 

the retrieval of multiplication problems in a mechanical way. 

In summary, learning by heart is central for efficient learning of multiplication 

facts. Children who do not recite and repeat multiplication problems enough in the 

first years of schooling will be less efficient solving these sorts of problems in the 

future. This is indicative of the diversity of approaches and methods necessary for 

learning mathematics, which go far beyond the ability of transfer from one context to 

the other (Soistak, Pinheiro, Galera, 2008).  

 

PROCEDURAL AND CONCEPTUAL KNOWLEDGE: KNOWING THE HOWS AND 

KNOWING THE WHYS 
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The main goal of basic mathematical education is related to the acquisition of 

“understanding” or adaptative expertise required to solve arithmetic problems posed 

by daily life (Baroody, 2003). Automatized, routine arithmetical skills related to 

knowledge of arithmetic facts and algorithms are generally regarded as secondary, or 

instrumental. For example, resolution of multidigit calculation or word problems 

requires automated knowledge of both math facts and algorithms. 

Neuropsychological evidence suggests, however, that the knowledge of arithmetical 

skills and concepts are at least partially segregable and, although interactive, do not 

causally related to each other. The message being that procedural knowledge does 

not follow from mastery of arithmetic principles. 

Under conceptual knowledge, we understand both biologically primary and 

secondary forms of abilities. One of the most basic forms of conceptual knowledge is 

represented by the principles of counting. Interacting with the physical and social 

environment, most preschool children develop an intuitive grasp of the verbal 

counting procedures and their relations to ordinality and cardinality, thus enabling to 

begin using counting as a strategy to solve simple arithmetic operations (Gallistel & 

Gelman, 1992). Practicing simple computations through counting, some children can 

effectively induce the principles underlying arithmetic operations, such as additivity 

and associativity that characterize addition.  But most children require formal 

schooling and instruction in order to grasp and master arithmetical principles 

underlying the four operations (see review in Geary, 2006). 

After an initial conceptual grasp that counting may be used to compute simple 

arithmetic problems, children progressively employ several counting strategies to 

solve addition problems, such as counting all items in a set, counting from the larger 

cardinal value (max strategy) etc. Different problem-solving strategies are 

successively employed in a series of overlapping waves, until children associatively 

acquire arithmetic facts and begin to retrieve solutions from long-term memory 

(Siegler & Shrager, 1984). When they begin using counting to solve addition 

problems, children commit several procedural errors, such as missing to count one 

element in the set, counting one element twice, etc. That is, they have the conceptual 

knowledge, but fail in its application (Geary, 2006). Perfectioning in strategy 

application requires practice and constitutes a kind of procedural knowledge. 
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Procedural knowledge may be considered a form of routine expertise (Baroody, 

2003), in that it is automatic, mandatory and not necessarily consciously aware.  

Practice with simple addition problems leads to progressive development of 

two arithmetic skills: arithmetical facts and computation procedures. Available 

evidence indicates that both facts and procedures require extensive practice and 

develop by means of associative learning involving synaptic plasticity in critical brain 

regions. Computations are initially carried on under controlled or executive forms of 

processing. Working memory resources represent the limiting factor in the early 

learning of arithmetic computations. Functional neuroimaging studies show that, 

initially prefrontal areas are the predominant loci of activity. As the individual 

progressively automatizes arithmetic operations, activity loci move posteriorly and 

subcortically (Rivera, Reiss, Eckert & Menon, 2005; Zamarian, Ischebeck & Delazer, 

2009). The critical loci of assumed synaptic plasticity differ between math facts and 

operation procedures. Available data indicate that the left angular gyrus is 

progressively activated as individuals acquire proficiency in new math facts 

(Zamarian et al., 2009).  

Less information is available on the structural-functional correlations of 

arithmetic operations, but there is reason to suppose that some regions of the basal 

ganglia, such as the dorsal striatum, are implicated. Adaptive alterations in firing 

patterns of tonic active neurons in the striatum have been for many years implicated 

in the operant learning of habitual behavioral sequences in animals (Graybiel, 

Aosaki, Flaherty & Kimura, 1994; Pennertz et al., 2009).  Neurological diseases such 

as Parkinson’s and Huntington’s have been long characterized by both general 

(Knowlton, Mangels, & Squire, 1996) and specific arithmetical (Teichmann et al., 

2005; Zamarian et al., 2006) procedural deficits. Neuropsychological evidence, thus, 

suggests that the dorsal striatum is involved in the creation of habits, routines, or 

sequentially organized repetitively reinforced operations involved both in syntactic 

linguistic and arithmetical algorithmic processing. 

Written multidigit calculation is an arithmetic skill that is suited to illustrate the 

interplay of conceptual and procedural knowledge in learning arithmetic. First of all, 

multidigit calculation requires grasping the concept of base-10 place value, but it is at 

the same time enormously facilitated by the algorithms made possible by the Arabic 
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notation. Efficient use of the Arabic algorithms requires extensive practice and 

several abilities, related to math facts, such as transcoding between notations, 

alignment of digits, borrowing and carrying operations, etc. All steps involved in the 

execution of Arabic algorithms are initially controlled by working memory and become 

progressively automatized (Rivera et al., 2005). Knowledge of place value is simply 

not enough, as children continue to commit procedural errors until they proceduralize 

such knowledge (Geary, 2006).  

Neuropsychological evidence obtained with acquired and developmental 

calculation disorders both in adults (Granà, Hofer & Semenza, 2006; Hittmair-

Delazer, Semenza & Denes, 1994; Semenza, Miceli & Girelli, 1997) and children 

(Murphy & Mazzocco, 2008; Temple, 1991) demonstrates that procedural and 

conceptual arithmetical knowledge are dissociable components, being modularly 

organized. Hittmair-Delazer and coworkers (1994) described the case of patient with 

deficient facts and preserved conceptual knowledge. The patient was able to use 

back-up strategies based on conceptual knowledge to effectively solve arithmetic 

operations. Rehabilitative efforts by the authors showed that conceptual knowledge 

was of little help in improving arithmetical fact knowledge, which required extensive 

training to be partially reacquired in very limited and specific way. Cognitive-

neuropsychological case studies show, otherwise, that procedural knowledge may be 

selectively impaired with preservation of conceptual knowledge. Patients were 

described with acquired acalculia, in whom knowledge of the algorithmic multidigit 

calculation procedures was loss (Girelli & Delazer, 1996), who had difficulty 

monitoring the implementation of algorithms (Semenza et al., 1997), and who 

predominantly committed errors of spatial nature, such as beginning all operations 

from the left to right, with impairment of all operations except division (Graná, Hofer & 

Semenza, 2006).  

One could, however, argue that cognitive-neuropsychological dissociations 

observed in acquired disorders demonstrate that conceptual knowledge may be 

preserved in face of severe disorders of multidigit calculation procedures. This 

hypothesis is contradicted by several observations. The most relevant evidence 

comes from the work by Murphy and Mazzocco (2008). These authors have shown 

that math difficulties in girls with fragile-X syndrome are characterized by a pattern of 



Haase; Ferreira; Moura; Pinheiro-Chagas; Wood  

 

103 – v.5(2)-2012 

JIEEM – Jornal Internacional de Estudos em Educação Matemática 
IJSME – International Journal for Studies in Mathematics Education 

relatively preserved math facts and simple algorithms in face of severe conceptual 

difficulties. In other words, girls with fragile-X syndrome can learn the facts and 

execute some simple algorithms, but experience considerable difficulty 

understanding what they are doing. 

 

DEVELOPMENTAL DYSCALCULIA 

 

As the distribution of every psychobiological trait or characteristic is widely 

dispersed in the population, there is a potential for dysfunction or environmental 

maladaptation in the extremes (Wakefield, 2007). Developmental dyscalculia (DD) is 

a specific learning disability in which an individual of normal intelligence experiences 

disproportionate difficulties with math achievement, which cannot be ascribed to 

emotional factors or inadequate schooling (Ansari, 2008; Dehaene & Cohen, 2007; 

von Aster & Shalev, 2007). Dyscalculia is a persistent and striking disorder (Shalev, 

Manor & Gross-Tsur, 2005), which potentially compromises the individual’s well-

being and mental health (Auerbach, Gross-Tsur, Manor & Shalev, 2008) and also its 

proper integration in the society (Geary, 2000). In increasingly informatized and 

cognitively sophisticated societies, even health self-care is affected by the level of 

math literacy (Estrada, Martin-Hryniewicz, Peek, Collins & Byrd, 2004).  The DD 

prevalence is estimated as being around 3-6% of the school age population (Shalev, 

Auerbach, Manor & Gross-Tsur, 2000). 

DD is a clinically and cognitively heterogeneous condition. There is evidence 

of substantial comorbity with other learning and behavioral disorders such as 

dyslexia and attention deficit/hyperactivity disorder (Rubinstein & Henik, 2009). A 

host of cognitive factors has been implicated in the genesis of mathematical learning 

disorders, such as phonological abilities (Simmons & Singleton, 2008), working 

memory (Geary, 2011) and ANS (Mazzocco, Feigenson & Halberda, 2011; Piazza et 

al., 2010). An important clue to the genetic origin of mathematical learning difficulties 

stem from the fact that several neurogenetic syndromes, such as Turner’s (Bruandet, 

Molko, Cohen & Dehaene, 2004) or velocardiofacial syndrome (de Smedt, Swillen, 

Devriendt, Fryns, Verschaffel & Ghesquière, 2007), present severe and 

disproportionate difficulties learning arithmetics as an important phenotypic trait. 
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Research on the neurocognitive bases of mathematical learning difficulties is 

ongoing, but some generalizations seem possible at the moment. Although its 

precise nature is still not entirely clear, evidence indicates that cognitive deficits are 

relatively specific. That is, difficulties learning mathematics cannot be entirely 

ascribed to general cognitive factors, such as intelligence, working memory, or verbal 

ability (Butterworth & Reigosa, 2007). Demonstration that children with dyscalculia 

have difficulties in tasks such as nonsymbolic magnitude comparison suggests that, 

at least in some phases of development, number sense may be important to acquire 

mathematical concepts and procedures (Mazzocco, Feigenson & Halberda, 2011; 

Piazza et al., 2010). 

Genetic factors also account for a substantial proportion of variance in math 

achievement, both in the general population as in individuals with more specific 

genetic disorders (Willcutt et al., 2010). As socioeconomic factors also play an 

important role in math achievement (Jordan & Levine, 2009), children of lower strata 

incur in the risk of being double handicapped. If any child living in poverty is 

genetically prone to mathematical learning difficulties, the individual’s liability may be 

enhanced when his/her difficulties are not properly recognized and treated. 

Research on mathematical cognition and associated learning difficulties 

suggests that arithmetic is a complex domain, characterized by multiple, interacting 

but partially independent subcomponents. Each domain is implemented by specific 

neural underpinnings subject to both genetic and environmental sources of variation. 

The etiology of arithmetical performance is multifactorial (Willcutt et al. 2010), there 

being no grounds to assume qualitative mechanisms differences between lower and 

higher performance (Mazzocco, 2007). Labelling of individuals in the lower 

performance end of the continuous as carriers of a disorder is arbitrary and justifiable 

only because low performance is persistent (Shalev et al., 2005), consistently 

associated to unfavorable outcomes, requiring proper intervention. Research has 

shown, for instance, that, DD is a predictor of behavioral and emotional disorders 

(Auerbach et al., 2008), and unemployment and lower wages (Bynner & Parsons, 

2006; Rose & Bett, 2001; see Haase, Moura, Pinheiro-Chagas & Wood, 2011, for a 

review). 
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As the distinction between normal and abnormal arithmetical performance is 

statistically arbitrary, broadly varying from one study to the other, Mazzocco (2007) 

proposed a terminological convention, which is being increasingly adopted, and 

which enormously facilitate studies comparability. According to Mazzocco, children 

whose arithmetical performance was identified as being under the 25th (or event the 

35th) percentile can be characterized as having mathematical difficulties (MD). 

Research suggests that low performance in children identified as MD is not 

temporally stable, being also subject to a diverse range of etiologies, including state 

variations, and social and emotional factors. Using a stricter criterion of performance 

under the 5th percentile it is possible to identify a smaller group of children, whose 

performance difficulties are chronic in nature and whose etiologies are 

probabilistically related to inherent factors of probable neurogenetic origins. Following 

Mazzocco (2007), this latter group of children can be labelled as DD or mathematical 

learning disability (MLD). Research on both sides of the arithmetical performance 

arbitrary divide is complementary, contributing to identify the neurocognitive 

foundations to arithmetic, being of enormous consequence to pedagogy, as it will be 

discussed in the next section. 

 

NUMBER SENSE TRAINING 

 

The relations between the number sense and mathematics achievement, as 

well as its involvement in DD occurrence, have been well established over the last 

years (Butterworth, Varma & Laurillard, 2011; Landerl, Bevan & Butterworth, 2004; 

Landerl, Fussenegger, Moll & Willburger, 2009; Halberda, Mazzocco & Feigenson, 

2008; Mazzocco, Feigenson & Halberda, 2011; Mussolin, Mejias & Noel, 2010; 

Piazza et al., 2010). It has been argued that an appropriate training of basic number 

sense abilities would induce an improvement on basic and also on more complex 

mathematical tasks. Main inspiration comes from dyslexia research, which showed 

that specific training on the core process of phonological awareness improves 

general performance on more high-level abilities (for an example, see: Torgesen, et 

al., 2001). In despite of that, research on number sense based on intervention is still 

on its earliest times. 
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One of the first contributions regarding number sense training effects was 

given by Dehaene and his collaborators with the software Number Race, a computer 

game developed to work as a training tool for children with low arithmetic 

performance (Wilson, Dehaene, et al., 2006; Wilson, Revkin, Cohen, Cohen, & 

Dehaene, 2006). In a playful environment children compete against the computer on 

a variety of early arithmetic aspects, like comparing numbers and set of dots (choose 

the larger), counting, linking symbols to concrete quantities, and simple calculation. 

The game was open-source made, so it is free for use and transform 

(www.unicog.org). Their first results indicated a significant improvement in 

performance on the more basic numerical cognition tasks, like number estimation 

and comparison, and also on subtraction, after the training period (Wilson et al., 

2006b). 

Other results come from studies conducted by Siegler and coworkers (Ramani 

& Siegler, 2008; Siegler & Ramani, 2008, 2009), who showed in more detail how the 

training works on preschoolers. Their program is base on the strengthening of 

number-space relationship representations by means of classical numerical board 

games. According to their results, numerical board games practice is capable to 

improve performance on numerical magnitude measures and, therefore, reducing 

individual differences between preschoolers on those abilities. Children with lower 

performance on numerical knowledge tasks exhibited, after the training epoch, 

performance levels similar to that of children with previous high performance on a 

variety of number tasks, especially magnitude estimation, digit naming, addition and 

magnitude comparison. The best results were found when comparing children from 

discrepant socioeconomic neighborhoods. In this sense, core number knowledge 

training is capable to fill the gap existing on the numeric-related stimulation provided 

by their home and social environments, strengthening the link between symbolic and 

nonsymbolic representations of number. Additionally, one of their most outstanding 

discovers was the training effect on subsequent arithmetic learning. Children who 

first had practiced on linear board game exhibited better results on subsequent 

arithmetic problems learning, indicating that early number magnitude training has a 

cumulative effect on later mathematical comprehension (Siegler & Ramani, 2009. 
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In a recent study Kucian and coworkers (2011) evaluated the efficacy of a 

computer-based training program on DD rehabilitation by means of 

neuropsychological testing and functional magnetic resonance imaging (fMRI). 

Computer training was very similar to a regular video-game (with challenging goals 

and a motivating story) where the player should associate numerical stimuli (Arabic 

numbers, dot sets or simple calculation) to the correct location on a number line.  

After training, both magnitude representations and neurofunctional changes were 

investigated. Significant performance improvements after test-retest were found for 

number line estimates and arithmetic achievement for both groups, but more relevant 

for the DD one. Regarding neurofunctional effects of training program, results point to 

a reduction in the activity levels of magnitude processing related areas (bilateral 

intraparietal regions), suggesting an automation of the cognitive processes related to 

numerical competence. 

Another approach, proposed by Gilmore, McCarthy and Spelke (2007), aimed 

at developing word problem solving abilities. These authors worked with preschool 

children, prior to any formal arithmetic instruction. They presented children with word 

arithmetic problems on a computer program, which required simple addition or 

subtraction procedures to manipulate sets of visually displayed objects such as 

candies. Children were encouraged to estimate the answer without counting. 

Experimental conditions manipulated magnitude distances between the sets to be 

operated on. Quantitative differences between operand were initially large, being 

progressively reduced. With training, children progressively improved their ability to 

provide increasingly precise answers and developed an intuitive grasp of the 

problem-solving strategy. The study by Gilmore and coworkers suggests that 

nonsymbolic approximate estimation operations may play a role in the development 

of arithmetic problem solving if the magnitudes involved in the problems are large 

enough to be easily discriminated. 

Together, these studies constitute the first main progress regarding the 

remediation of core numerical abilities. Unfortunately, results still should be 

interpreted carefully due to reduced sample sizes and limited methodological 

designs. Nonetheless, evidence points to the efficacy and reliability of activities that 

deal with basic mathematical concepts like magnitude estimation, counting and 
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number reciting, and also regular board games, on both school and home contexts. It 

is clear that core numerical abilities stimulation, on the very first school years, is 

capable to remediate and improve current numerical performance, and also has a 

long term effect on later mathematical learning. 

 

EMOTIONAL AND PSYCHOSOCIAL ASPECTS OF THE MATHEMATICAL 

EDUCATION 

 

Mathematics anxiety 

Up to this point problems with numbers and arithmetic have been described 

from a cognitive point of view. Nonetheless, mathematics difficulties impact also on 

emotions, especially on negative ones. Who has never feared complex mathematics 

problems in a test, who did never experience helplessness when the time is running 

faster than one can solve enough problems to pass a mathematics test? Most of us 

has experienced that at least once or twice in school or later on in college. Moreover, 

how many of us can say, that they liked not only the topics treated in mathematics 

classes but also the mathematics teacher? Only a few, for sure. Most of us used to 

experience more anxiety before a mathematics test than before tests in any other 

topic. Moreover, the preparation for these tests used to consume more time and 

effort and of course more self-control and tolerance against frustration than other 

topics.   

Since at least one decade, modern neuroscience and cognitive psychology 

have been investigating the causes of these negative feelings towards mathematics. 

The fear of mathematics has also been called “math anxiety”. Math anxiety describes 

the negative stress responses associated with learning and being tested in the topic 

mathematics. Math anxiety is more pronounced in girls than in boys (Dowker, 2005). 

Interestingly, math anxiety is not strongly correlated with performance in 

mathematics. There are almost as many students with a very high mathematics 

performance and high math anxiety as students with low performance. As other 

forms of anxiety, math anxiety is associated with specific psychophysiologic stress 

responses which include an increase in autonomous responses and the liberation of 
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stress hormone cortisol in blood-flow, which increases heart- and breath-rates. 

Stress responses have an interesting connection with performance: a certain amount 

of stress influences performance positively. In the case of mathematics, a little fear of 

having committed a mistake here or there can increase concentration and accuracy 

and thereby increase performance. However, too much stress may lead to panic 

reactions and to the sensation of having a blank. Contrary to the positive effect of a 

moderate amount of stress on performance, too much stress can have a dramatically 

negative impact on the outcome and lead to much worse marks in mathematics 

courses than that corresponding to the actual cognitive abilities of children. 

Stress responses are learned, very resistant to changes, and can be very 

specific. This means that a student with high math anxiety may not necessarily 

experience any anxiety in other school topics. Therefore, it is very important for the 

education in mathematics to avoid unnecessary stress. To correctly allot the amount 

stress necessary to increase the motivation of a whole class up to the point of 

highest performance while not exceeding this point in the case of students with math 

anxiety requires specific teaching abilities and accurate diagnostics of each single 

student. 

One of the most important behavioral responses to stress with an impact on 

teaching mathematics is avoidance. Stress is one of the most powerful negative 

motives for learning. The negative emotional responses associated with learning in 

determined topics determine whether children experiencing high levels of math stress 

are more prone to avoid or escape situations generating math anxiety, i.e. 

mathematics classes and mathematics tests. Children with high math anxiety 

experience more stress learning mathematics than children with lower levels of math 

anxiety. Math anxiety is not something that vanishes after finishing school. College 

students may present considerable stress before mathematics tests (Pletzer et al., 

2010). 

 

GENERAL DISCUSSION 
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The model presented in Figure 2 suggests that primary arithmetic abilities 

(analogic representation of numerosity, counting, arithmetic principles, etc.) interact 

with the environment to elicit a sequential process of acquisition of arithmetic abilities 

under the influence of formal schooling, in such a way as to allow the development of 

secondary abilities (e.g. Arabic notation, positional base-10 value, algorithmic 

procedures etc.). After its elicitation by epigenetic interactions, the model is 

deliberately depicted as linear and sequential. Linearity and sequentiality are 

properties, which correspond to the fact that arithmetic acquisitions are cumulative 

and hierarchically organized. Subsequent procedural and conceptual developments 

in arithmetic require a solid basis in previous acquisitions. And the nature of previous 

acquisitions is peculiar. Arithmetic is a subject matter in which learning depends on 

knowledge proceduralization (Lieberman, 2000; Zamarian et al., 2009). Learning of 

arithmetic is only possible by means of a strenuous process of automatization of 

conceptual and procedural knowledge by means of an extensive training program. 

Mathematical abilities are only consolidated when the individual develops an intuitive 

knowledge, that is, mathematics must become second nature, otherwise is not 

learned.  As an example, discovery of arithmetic principles seems to be based on the 

interaction of verbally mediated counting strategies and more primitive ANS 

(Lecointre et al., 2005). Mastery of the Arabic notation, by its turn, requires the child 

to be proficient in verbal abilities, composition principle and spatial representational 

abilities, which allow the comprehension of decimal positional value (Lochy & 

Censabella, 2005). 
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Figure 2 – Primary and secondary arithmetic abilities. 

 

The considerations we have made conduct us to the argument that 

mathematical education may benefit from neuropsychological and neurocognitive 

knowledge. Neuroscientific evidence reviewed suggest that acquisition of arithmetic 

abilities may be characterized by 1) a modular albeit plastic and environmental 

interactive organization of the pertinent representations, 2) a complex interactive 

process between genetic and environmental influences in distinct developmental 

phases and across multiple levels of control, 3) interaction between symbolic and 

nonsymbolic, both automatically and deliberately activated representations, 4) the 

progressively cumulative nature of acquisitions, and, finally 5) the need to develop 

automatization or intuition of the underlying principles and procedures in one level 

before advancing to the next. 

Two important implications for math education may be inferred in case of 

neuropsychological and neurocognitive data is considered relevant. Math education 

may benefit from a reliable neuropsychological diagnosis of the learner’s 

developmental level and cognitive style or, eventually, assets and deficits profile. 



 Cognitive neuroscience and math education: teaching what kids don’t learn by themselves 

 

112 – v.5(2)-2012 

JIEEM – Jornal Internacional de Estudos em Educação Matemática 
IJSME – International Journal for Studies in Mathematics Education 

Available evidence suggests that mathematical achievement may be explained by 

socioeconomic factors, but individual differences also explain a substantial and 

unique portion of variance (Jordan & Levine, 2009; Willcutt et al., 2010). On the other 

side, neuroscientific knowledge also corroborates recommendations that the math 

curriculum should be modular and sequentially organized. Students should progress 

from one module to the other only after acquiring intuitive mastery over one specific 

domain. 

If neuroscientific considerations are important for typical learners their 

relevance is even greater in the case of children experiencing difficulties learning 

mathematics. Interest in neurocognitive informed intervention is growing, but still 

limited (Dowker, 2004). An important research focus concerns screening and early 

diagnosis. Available evidence shows that, besides poverty, individual differences in 

number sense at preschool are predictive or risk of developing difficulties learning 

math (Jordan, Kaplan, Locuniak & Ramineni, 2007). A few intervention programs for 

children with difficulties learning math have been developed based on the concepts 

of number sense, modularity, and sequential hierarchical organization of the 

curriculum (Kaufmann, Handl, Thöny, 2003; Wilson, Revkin, Cohen, Cohen & 

Dehaene, 2006b; see also references in Butterworth et al., 2011). Results are 

preliminary, but encouraging. 

The presence of a learning difficulty may trigger a significant impact in the 

quality of life of the children and their family. Children with learning disabilities may 

have an entire life course marked by the presence of an excluding and stigmatizing 

label of "school failure". Reading and writing difficulties are well known by educators 

and the families in general, which allow an early diagnosis and treatment. On the 

other hand, mathematical difficulties are often underestimated by parents and 

educators and mistaken as a lack of intelligence, laziness or lack of motivation to 

study. Children with mathematics learning difficulties often receive pejorative labels 

and are excluded in the school environment by teachers and their peers, which can 

bring serious consequences to the academic development and individual's 

psychosocial adaptation. 

Considering these aspects, it is necessary for educators to investigate the 

possible factors related to the learning disabilities of their students, instead of 
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attribute all difficulties to general features, such as lack of stimulation in the family. 

Especially when a child has a particular difficulty in mathematics, and not in other 

disciplines, this difficulty can not be attributed solely to the cultural context of that 

individual, since the lack of a rich environment might explain an impairment in the 

learning in general, but not a specific  difficulty in a particular discipline. It is 

worthwhile to think about an educational practice based on scientific evidences, 

analyzing the prevalences of learning difficulties. Evidences reveal that about 3-6% 

of the population has DD (Shalev et al., 2000) and about 15% of children present a 

milder math learning difficulty (Mazzocco, 2007). Thus, for each group of 100 

students, a teacher is likely to have about five pupils with DD and about 15 children 

with mild math difficulties, which can not be attributed to contextual factors, but to 

individual, cognitive processes underlying the learning of mathematics. 

A theoretical proposal very influential in the field of mathematics education is 

the sociology of education, especially the Bourdieu’s theory, which argues that the 

degree of success achieved by students throughout their school careers could not be 

explained by its personal features, such as biological or psychological characteristics, 

but are related to their social origin, which would put them in a position more or less 

favorable to the school demands (Nogueira & Nogueira, 2002). 

One area that supports the importance of context for learning mathematics is 

ethnomathematics, which has gained strength in mathematics education. The 

Ethnomathematics seeks to value the mathematics content of different social groups 

and concepts constructed by informal student in your life outside school. This area 

emphasizes the development of critical technology against the scientific context in 

which the student is involved, providing students with tools that help them both in a 

critical situation analysis and the search for alternatives to solve the situation (Borba, 

1990; Powell & Frankenstein, 1997). 

However, there are several evidences indicating the existence of individual 

differences in learning (as mentioned above), including children that present learning 

difficulties. 

The role of traditional learning methods such as memorization has recently 

been taken up by math educators who argue that the poor arithmetical performance 

(e.g. in Brazilian school) are at least in part explained by a high prevalence of 
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nondirective pedagogical practices. (Soistak, Pinheiro, Galera, 2008). The use of 

pure memorization methods will have no educational effect, but interconnected with 

the cultural context, this method may result in great benefits. The use of the Kumon 

method, for example, may be suitable for children that need to be trained in the 

procedural aspects of mathematics. The Kumon method introduces the assumption 

that to achieve any goal, it takes continuous effort and a need to advance step by 

step without disruptions. Kumon argues that children begin to hate studies when are 

forced to confront a content beyond their capacity (Kumon, 2001). Considering this, 

the math anxiety may be associated with an avoidance behavior due to the learning 

difficulty. 

A recent research carried out in public schools of a Brazilian city reinforces the 

importance of the family to the academic performance. However, the relationship 

between family and school represents a fundamental aspect for the student learning, 

having in mind that schools that have the best results not only reproduce the family 

cultural context, but make an effort to stimulate the best performance of their 

students (Alves, 2010). 

A very powerful strategy to deal more appropriately with the students’ 

individual differences in mathematical learning is to use resources to stimulate the 

number sense and other primary numerical abilities, based on scientific evidences, 

specially those from developmental cognitive neuropsychology. The interactions of 

neuroscience and mathematics education may benefit all children:  1) optimizing the 

learning of typical achieving children; 2) compensating the deficits of children who 

present learning difficulties and 3) stimulating pupils who did not have the opportunity 

to be stimulated in their cultural setting.  
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