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Abstract 
This work consists of a transdisciplinary discussion for engineering training based on the analysis of transformations in the definitions of 
models from physical objects to computational models. We analyzed changes in mentions of the term “model” in popular dictionaries between 
the XVIII and XX centuries, finding that definitions for scientific models are more recent than commonly imagined. In parallel, we present the 
development of differential and integral calculus, from its first concepts to computational use in engineering problems, discussing the role of 
classical mechanics and the relativistic approach in applied engineering projects. Until the XX century, the definitions of the term model were 
more associated with models for the manufacture of objects, or artisanal molds typical of everyday life, as well as wooden or metal molds or 
human models for sculptures or drawings. Definitions of scientific language associated with formalizations, theories or forecasting systems 
are more associated with the late XIX and early XX centuries. We developed software to use simple differential equations in an engineering 
application to exemplify the use of applied mathematics in engineering and technology companies and physical models in engineering 
problems, in order to illustrate the fundamental character of differential equations for problem solving and the importance of Calculus in the 
training of engineering professionals.
Keywords: Models. Dictionaries. Engineering. Computers. Software.

Resumo
Este trabalho consiste em uma discussão transdisciplinar para a formação em engenharia a partir da análise das transformações nas 
definições de modelos desde objetos físicos até modelos computacionais. Analisamos as mudanças nas menções ao termo “modelo” em 
dicionários populares entre os séculos XVIII e XX, constatando que as definições para modelos científicos são mais recentes do que comumente 
se imagina. Em paralelo, apresentamos o desenvolvimento do cálculo diferencial e integral, desde seus conceitos primeiros até o emprego 
computacional em problemas de engenharia, discutindo o papel da mecânica clássica e da abordagem relativística em projetos aplicados 
de engenharia. Até o século XX, as definições do termo modelo estavam mais associadas a modelos para fabricação de objetos, ou moldes 
artesanais típicos do cotidiano, bem como moldes de madeira ou metal ou modelos humanos para esculturas ou desenhos. Definições da 
linguagem científica associadas a formalizações, teorias ou sistemas de previsão estão mais associadas ao final do século XIX e início do 
século XX. Desenvolvemos um software para utilização de equações diferenciais simples em uma aplicação de engenharia para exemplificar 
o emprego da matemática aplicada em empresas de engenharia e tecnologia e dos modelos físicos em problemas de engenharia, no intuito 
de ilustrar o caráter fundamental das equações diferenciais para a resolução de problemas e a importância do Cálculo na formação de 
profissionais de engenharia..
Palavras-chave: Modelos. Dicionários. Engenharia. Computadores. Software.
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1 Introduction

The human exercise of understanding the universe involves 
the composition of ideas to explain how it works, accompanied 
by formal attempts to synthesize the phenomenas. Over time, 
ideas led to the creation of theoretical models of explanation, 
as well as criteria for defining models (Lavina, 2004). Models 
are central in several scientific contexts, since engineers and 
scientists use them to objectify reality (Kneubil, 2020, p. 1), 
and, over time, models undergo updates, revisions, and new 
tests for them to be kept in force (Tonidandel, 2013). Some 
of the most important models in society were constructed 
after the development of Calculus, by Newton and Leibniz, 
because differential equations allowed the calculation of 

magnitudes that varied over time, or among themselves. With 
this mathematical tool, a transformation took place in societies 
that generated economic and technological consequences.

2 Methodology

The methodology involved the study of differential 
equations, in the field of function Calculus, consultation 
of dictionaries and computational software studies. The 
dictionaries selection was based in five digital collections: 
(I) the National Library of France (BnF) portal; (II) a 
British online portal with a listing of dictionaries between 
the XIX and XXI centuries; (III) the portal of the National 
Library of Spain, maintained by the Spanish government; the 
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(IV) portal of the National Library of Germany (Deutsche 
National Bibliothek, and (V) the Portal of the Digital Library 
of Munich (Münchener Digitalisierungs Zentrum Digitale 
Bibliothek). The two questions that guided the article were: 
(I) is it possible to find a change in the definitions of the term 
model in dictionaries, including the dimension of scientific 
models after a certain period of modernity? (II) Is it possible 
to explain how calculus is applied in real problems and is it 
also important in computing training?

The notion of model that most influenced the construction 
of the article was the field of calculus of functions, therefore, it 
is based on mathematical models. However, it is important to 
say that there are models and models, especially considering 
the broad spectrum of scientific areas. 

Methodologically, the text did not seek to better detail 
the difference in models between the sciences. In empirical 
sciences, such as immunology, models adjust according 
to experience. In sciences that do not depend so much on 
experience, models are tested not inductively but deductively 
by peers. Also, computational models involve database 
configuration, while mathematical models present more 
detailed calculations.

3 The Categorization of Models

The categorization of models may involve probing, 
phenomenological, computational, development models, 
heuristic models, didactic models, mathematical or formal, 
mechanistic, instrumental models (Stanford, 2006). Harrison 
& Treagust (2020) defines a scientific model as “an abstract 
and simplified representation of a system of phenomena that 
makes its central characteristics explicit and visible and can 
be used to generate explanations and predictions” (Harrison 
& Treagust, 2000). 

In a more open sense, rational thinking and planning about 
a given action already presents the characteristic of a plan or 
theoretical model. In certain contexts, however, plans must be 
put to the test to demonstrate their soundness. The existence 
of criteria allows the evaluation of the legitimacy of a model.

The main models emerged in the XVIII and XIX centuries 
with the development of classical mechanics, as they were the 
most powerful constructs for motion analysis. Newton and 
Leibniz created strong theorems for the study of functions. 
Derivatives, and later integrals, were developed and united 
in the fundamental theorem of calculus. Newton’s idea was 
to evaluate the rate of change of a function, which can be 
used to measure the position of a particle. For this, Newton 
performed some calculations that produced an application 
of several works of mathematics with the physical image 
of world, constant at that time, what changed in a century, 
with adaptations and probabilities introduced by relativistic 
problems.

To understand how mathematics connects with physics in 
unified models, one can start with the idea of the derivative. 

The concept of average speed can be seen as ΔS/ Δt = (S(ti)-
S(to)/t1-t0). The instantaneous velocity, v(t0) appears as 
a limiting process. . We can make a limit as t1 approaches 
t0, from the position of t1 as it approaches t0, divided 
by t1 minus t0. At this time, the concept of a derivative is 
that velocity is the derivative of position. When one knows 
how to derive, therefore, one can calculate velocities from 
positions. Considering v(t) = velocity, to calculate the average 
acceleration, ΔV/ Δt = (V(ti)-V(to)/t1-t0). The instantaneous 
acceleration is the derivative and limit as t1 tends to t0. 
In that regard, a(t0) is. If we have the velocity function, it 
can be derived to get the acceleration. From any hourly 
equation, when differentiating you get the velocity and when 
differentiating you get the acceleration. If derived again, the 
rate of change of acceleration can be obtained. With this, any 
motion can be calculated, not just uniformly varied rectilinear 
motions.

By the tangent line, it can be observed in the graph of 
functions that the angular coefficient of a line can be reached 
by the tangent to a curve of a graph at a point. Being y = 
m.x + n, we have (y-yo)/(x-x0) = m (angular coefficient).  
When there is a graph of x and y with a diagonal line that 
crosses at least two points, and considering that it has a curve 
that also passes through the two points, the function can be 
calculated considering these points and the slope of the line. 
When looking at the angular coefficient, it is verified that the 
angular coefficient is the trigonometric tangent of the angle 
ɵ. When drawing a secant line, one can see that, at the two 
points, x0 and x1, when x1 tends to x0, the secant line tends to 
the tangent, resembling a limit phenomenon. One can take the 
slope, and then make the secant tend to the tangent. The slope 
of the secant is the tangent of the angle, opposite leg over 
adjacent leg. The slope of the tangent line (xo,yo) can also 
be seen as a limit . The rate of change, which is expressed by 
calculating the derivative, is also present in population growth 
rates, or rates of change in prices over time (inflation). The 
number of applications in numerous areas is quite large.

While differential calculus solves the tangent problem, 
integral calculus solves the area problem by allowing an 
approximate calculation of the area in a given graph. By 
the fundamental theorem of calculus, if f is continuous at 
[a,b], then the function of F can be defined by: F(x)= being 
continuous on [a,b] and differentiable on (a,b) and: F’(x)=f(x), 
that is, F is the antiderivative of f. ’=f(x) ou d/dx . With integral 
and differential calculus, several engineering problems could 
be solved and, as a consequence, different technological 
constructions took place that provided better business and 
operational efficiency, as well as new knowledge.

The creation of models has historically gone through a 
series of epistemological discussions. The first one was: is it 
possible to obtain knowledge from experience and classify it? 
This question led to a debate on the problem of induction, 
started by David Hume, and later addressed by Karl Popper. 
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The discussion of whether knowledge could be obtained 
through experience was concluded once it was proven that, 
positively, the models could be created and tested, as long 
as their provisional character was assumed, considering the 
possibility that new, more refined models are presented and 
accepted (Laux, 2012). The second historical-philosophical 
debate about the models involved the compatibility of models, 
starting from the measurement problem, which concerns an 
unresolved problem of how the collapse of the wave function 
occurs in the context of debates in mechanics. 

Because it was not possible to observe this process directly, 
different interpretations of quantum mechanics emerged 
(debate between Margenau, Wigner and Putnam), and a key 
set of questions were raised that each interpretation should 
answer. The discussion about the measurement problem 
was important at a theoretical level for models in science 
(Pessoa-Junior, 1992, p. 2011). Although this discussion is 
more specialized, in this article we will address another more 
superficial approach to models, from their transformation to 
computational models with the advent of programming.

Not only this works were important for modeling, but 
also a series of other mathematical works, be it the studies 
of unknown quantities by Viète, or the analyzes of curves by 
Euler and Lagrange. The studies of infinite series, as well as 
studies on quadrature, negative geometries and imaginary 
quantities in the XIX century (Roque, 2012). The resolution of 
equations led to the appearance of unknown numbers, in the 
same way that the “algebraization” of mathematical analyzes 
were relevant (Roque, 2012).

The advances in mathematics that can be considered as 
instrumental for the creation of models, involve: theories and 
analysis of curves, integral and derivative calculus, algebraic 
methods, studies of infinite series, modification in the concepts 
of numbers, studies of representations geometry of unknown 
quantities, studies on functions and limits and in topology. 
Some of the elements in this set overlap and blend together. 
Aristotelian logic was translated into set theory in the middle 
of the XIX century. With this, analytical philosophy was 
being formed, along with algebras and mathematics. Different 
sciences contributed to the creation of models.

4 Analysis of the Definitions of the Term “Model” in 
Dictionaries

The XVIII century was marked by the development of 
some works in science in the Old World whose bases had been 
discussed for quite some time. In the work Discourse on the 
Method (1637), by R. Descartes, the basis of rationalism, there 
was no reference to mathematical models, but in later studies, 
the term model was better conceptualized. Descartes only 
mentioned that models served as a reference for comparison 
in an informal sense: Que si mon ouvrage m’ayant assez plu, 
je vous en fais voir ici le modèle, ce n’est pas, pour cela, 
que je veuille conseiller à personne de l ‘imiter (Descartes, 
1637). In dictionaries, on the other hand, definitions would 

appear, however, scientific definitions would take time to be 
presented.

In the Encyclopédie ou Dictionnaire Raisonné Des 
Sciences, des arts et des métiers, par une societé de gens de 
lettres, by Direrot and D’Alembert (1750), there are two pages 
dedicated to the term, being the most complete definition 
found, probably due to the objective of universalization of 
knowledge proposed by the encyclopedia in its more than 
ten constituent volumes (Diderot, D’Alembert, 1750). The 
main references are to models as molds made of wax or other 
materials, to models such as naked men posing in drawing 
classes or models as sculptures or figures in clay. There is 
no mention of the physical-mathematical sense, although in 
this period Newton and Leibniz had already created calculus 
and Galileo had already attested the Solar System with his 
spyglass (1609).

In the Dictionary of the French Language (Dictionnaire de 
la Langue Française) by Émille Littré (1873), the term “model” 
refers to models of sculptures or behaviors, but also refers 
to a representation of a work to be executed (reprèsentation 
d ‘un ouvrage a executor) (Littré, 1873, p.583). However, 
the definitions do not cover scientific models (modèles 
scientifiques), or linguistic, or theoretical, or mathematical, 
physical, or engineering models. In the work Grand Larrousse 
de la Langue Française (1989), by Louis Guilbert, the term 
modeling does not present an association with scientific 
models, however, the definition encompasses scientific 
models: “modele (...) la science de former des hypotheses, des 
noms, des modeles” (Guilbert, 1989, p.3336). Comparison 
of excerpts from the two works suggests that the scientific 
perception of models in sampling French dictionaries was not 
described in 1873, but was reported in 1989.

In the Spanish dictionaries, consulted through the digital 
collection of the National Library of Spain, it was possible to 
locate the Dicionário nuevo de las lenguas, española y french: 
en que se contiene la explicacion del español en francés, y 
del francés en español, by Francisco Sobrino and printed in 
Brusselas, at the house of book merchant Francisco Foppens. 
In this work, model was conceptualized as “dessein de quelque 
ebose que l’on veut faire, that is, a drawing sketch of anything 
you want to do” (Sobrino, 1721). 

The definition is particularly interesting, as it starts from 
a representation created by the individual about something 
that one intends to create. It is very close to the modeling 
activity in science, however, the definition was not developed 
too much so that more elements could be pointed out. But, 
despite this, the definition is from a work of 1721. Still in the 
Spanish collection, it was possible to find a version of “El 
maesto de las dos lenguas: diccionario español y frances” by 
D. Francisco de la Torre y Ocòn, printed in Madrid between 
1728 and 1731. In this volume, model was conceptualized as: 
“modelle, m. Model, bring, plant. item: The man who serves 
at the Academia de los Pintores for example. Model, imp. 
Model, rule, agenda” (Torre & Ocon, 128-1731, p. 260). The 
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a scientific model, such as Copernicus’s own critique of the 
Ptolemaic system (Sagan, 1995).

During the second half of the 1900s, the mention of 
modeling as scientific modeling could be found in the 
dictionary by Aarts, Chalker and Weiner, whose 2014 edition 
was consulted. The Oxford Dictionary of English Grammar 
(2014) reported “model” (model) as “An abstract answer or 
theory of a grammatical or semantic system of a language” 
(AARS et al, 2014, p. 252). Although the set of dictionaries 
data is small, it can be observed that, in English dictionaries, 
the change of records is relatively recent, especially in works 
that address more general definitions on different topics and 
that are not dictionaries designed for scientists of a certain 
area.

Finally, the German dictionaries located in the digital 
collections of the German National Library and the Munich 
Digital Library. In German digital collections, it was possible 
to locate the work Lettisch-deutsches Wörterbuch, by Karl 
Ulmann (1820), in which there was no definition for model 
(modell). In the case of the book Deutsches Wörterbuch, by 
Moritz Heyne (1892), written in Gothic German, the emphasis 
on models was given in terms of models for construction, for 
the manufacture of wheels and machines, models of factory 
products, referring to models French and Italian (Heyne 1892: 
845-848). In the Digital Library of Munich it was possible 
to locate a version of a Franco-German dictionary from 
1919, by Karl Sachs, entitled Enzyklopädisches französisch-
deutsches und deutsch-französisches Wörterbuch. In this 
encyclopedia, the term model (modell) was defined as an a 
priori representation or concept, predecessor to experience, 
about how an object should be: “le type représente ce que 
les objets sont aux yeux; le modele montre ce que les objets 
doivent être; le type est tel que la chose; il faut faire la chose 
d’après le modele” [type represents what objects are to the 
eye; the model shows what the objects should be; the type 
is like the thing; you have to do it according to the model] 
(SACHS, 1919, p. 183).

In the German dictionary of the XX century, Wörterbuch 
des althochdeutschen Sprachschatzes, by Gerhard Köbler 
(1993), no reference to the term model was found in any of 
its editions. The appearance of the definition of scientific 
models in dictionaries seems to be due to a sum of factors, 
from the professionalization of scientific activity, with the 
emergence of engineering applications, such as the expansion 
of universities or developments of the Enlightenment, the 
possibilities of translation and circulation of printed matter, 
and the advances made by mathematicians, engineers, 
technicians, workers, commercial and dynamic exchanges in 
which other local and distant agents participated. We present a 
history of the development of an equation used in engineering 
to portray that the appropriation of terms in dictionaries stems 
from applications of mathematical works.

The process of transformation of concepts is a consequence 
of the structuring of scientific terms and the development 

reference to the human anatomy model in art schools also 
appears in this publication.

Turning to the English works, in the Etymological and 
Pronunciation Dictionary of the English Language, from 1881, 
it can be observed that the definition of model refers to models 
of shapes, or measures, or even to the representation in clay 
and plastic materials, but not makes reference to the modeling 
of the outside world in the field of science (Smorthmonth, 
1881, p. 364). In Webster’s Complete Dictionary of The 
English Language, published in London in 1886, the term 
“model” was associated with the definition of planning or 
forming something from a pattern, a mold, “modeling” being 
associated with a mold for some work to be done. be executed, 
like plastic molds (Goodrich, Porter, 1886, p. 848). However, 
modeling has not been associated with more abstract beings 
in this book, as a theoretical model. The same occurs with 
the Chambers Dictionary (1874), which brings more general 
definitions, at the time of its conception, about the term 
“modeling”, associating it with more everyday situations 
(Chambers, 1874, p.334).

Turning to the English dictionaries of the early 1900s, in 
Fowler’s The Concise Oxford Dictionary of Current English 
(1919), the concept of model refers to more popular senses of 
representation of a structure, in clay, or wood, or plastic or a 
model for fashion, for clients, but there was no approximation 
of the mathematical-scientific meaning of the language 
(Fowler, 1919, p. 522). In this dictionary, measurement 
(measurement) was defined as the act of: “determining the 
extent or amount of (thing) by comparison with a fixed unit or 
with an object of known size; check the size and proportions 
of (person) to clothes; look (person) up and down with eyes; 
external mark (line etc. of certain length” (Fowler, 1919).

In the year 1911, a relatively popular dictionary had been 
published, the Modern Dictionary of the English Language, 
by MacMillan (1911), in which one can find a definition for 
the term “measure” which reads as follows: definite unit of 
capacity or length; the quantity contained in such standard; 
an instrument to measure; the measurements needed to make 
an article (like a dress, etc.); (in politics) a purpose, plan or 
means by which an end is achieved; an act, statute or act of 
Parliament; a quantity or number contained in another an exact 
number of times; a dance (in time or measure); (in geology) a 
series of strata or beds (Macmillan, 1911, p. 418).

The changes in the registers around the concept of model 
in the dictionaries also related to a slow change of mentalities 
that occurred in Europe. The gradual critique of Aristotelian 
conceptions through the absorption of Euclidean geometry, 
a phenomenon that Alexandre Koyré called “geometrization 
of space”, previously called Aristotelian bases of space, 
influenced the anthropocentric view of the world of the 
modern human, giving more power of agency to the human 
in their abilities to understand the natural world on its own 
terms. Evidently, several small collapses in cosmological 
understandings are also reflected in the debate on the idea of 
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and first derivatives over time for the function y(t). Derivatives 
and integrals are calculation concepts with the purpose of 
measuring quantities, limits, deformations, variations and 
other parameters in engineering. The previous values in this 
equation are: y(0)=0 and y’(0)=1. By the conversion properties 
extracted from tables of Laplace transforms, properties can be 
obtained:

Property (5):       

Property (6):       

It is posible to find the poles of equation:

In this case analyzed by the mathematical procedure, the 
solution is:

According to algebraization, the function that describes 
the electrical circuits can be obtained from bottom to top by 
the Laplace inverse, considering data obtained by empirical 
experience. Laplace transformation considers that: , where, 
F(s) is the Laplace transformed function of f(t); s is a complex 
variable (can be a complex frequency) and is the base of the 

of inductive method by experimental activity, together 
with the construction of formal tools and the mathematical 
constructions. Over time, with the search for symmetries by 
scientists, it might be possible to identify regularities in nature 
that led to the transformation of words. In the long duration, 
what is behind the emergence of the notion of scientific model 
in popular dictionaries is a significant cultural change, marked 
by the incorporation of explanations based on heavier empirical 
evidence and the constitution of engineering organically and 
the constitution of the field of engineering from the bottom up, 
in an organic way, taking advantage of the models of classical 
mechanics and applying them to real problems of companies, 
businesses, cities, universities.

A good example of how classical mechanical models 
were used in the construction of engineering problems is the 
study by Heaviside using the Laplace Transform to electrical 
circuits. The Laplace transform was a method for solving 
differential equations that allows the evaluation of the stability 
and frequency response of a system. Periodic signals, which 
behave like functions that can be visualized in the time or 
frequency domain, can be expressed by functions, usually 
integrals that portray changes in their coverage areas. An 
example of a modeled signal is the sound pressure over time, 
while in the frequency domain the different frequencies of 
musical notes are verified.

Pierre-Simon Laplace (1749-1827) developed an 
important method for systems, the Laplace transform. 
Alongside the Fourier transform and the Z transform, they are 
inputs widely used in signal analysis. The Laplace transform 
was studied by engineer and mathematician Oliver Heaviside 
(1850-1926), who demonstrated an application in electrical 
circuits, published in The Electrician. With the transform, 
one can find the corresponding differential equation, using an 
operator L as a symbol.

The integral linear operator allows the destruction of 
derivatives, transforming ordinary differential equations into 
algebraic equations. The method can be used on piecewise 
continuous functions, in which the integral converges at 
certain “s” values, defining a function of s which is called the 
Laplace transform of s. Considering that “f” is dominated by 
some exponential, and the exponent of order -st, the function 
tends to zero over time and, in these cases, the function can 
be solved by means of elementary formulas. The inverse path, 
through the inverse transform, can also be performed. With 
similarities to the Fourier transform, the Laplace transform is 
expressed by:

For continuous-time and impulse-response input x(t) 
signals, we can consider an output signal y(t) via a convolution 
integral, such that x(t)=. Since H(s) is a complex constant, we 
can consider arbitrary values in its formula: 𝑦 ′′ + 2𝑦 ′ + 2𝑦 
= 10𝑦 (𝑦 − 5). In the equation, it is possible to fi nd the second
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natural logarithm (Euler’s number). The Laplace Transform 
converts a time function f(t) into a complex frequency 
function F(s). 

This transformation is very useful when dealing with 
differential equations, as it can simplify the resolution of 
certain problems. It converts a function of time f(t) into a 
function of complex frequency F(s), which is useful when 
dealing with differential equations, as it can simplify solving 
certain problems. It becomes an algebraic equation that is 
easier to solve. After finding the solution in the Laplace 
domain, we can apply the inverse Laplace Transform to obtain 
the solution of the original differential equation in the time 
domain.

With the improvement of gaps in mathematics and 
physics, equations and classical mechanics began to solve 
more complex problems and allow the industrial development 
of applications in the most different productive sectors. In 
sub-atomic problems or problems involving time dilation, 
very high velocities or other characteristics treated with 
greater precision by theoretical physicists, the calculations 
of classical mechanics are still valid, but involve more 
probabilistic issues. On the other hand, quantum mechanics 
and special relativity are different subjects better analyzed by 
specialists. 

In technological projects of applied engineering that 
involve real-time control or optimization systems, data are 
obtained during operation and the systems have internal 
mathematical functions that correct certain responses of the 
system itself over time. In some cases, engineering equipment 
such as embedded systems have functions that are based on 
calculation principles when they are in operation. With this, 
mathematics and physics unite with computing to allow 
important projects for societies to materialize. Airplanes or 
certain equipment in the health area are concrete examples.

An engineer can build programming codes in which 
differential equations are used to solve specific engineering 
problems. If we are interested in modeling the vertical path 
of an airplane in an ascending or descending flight, we can 
consider the forces that act on the airplane during its flight, 
including the lift force, the drag force and the gravitational 
force. By Newton’s Second Law (F = m.a) one can describe 
the vertical movement of the plane as a function of time. The 
lift force (L) is responsible for lifting the plane and is opposite 
to the weight force (mg), where m is the mass of the plane 
and g is the acceleration due to gravity. The drag force (D) 
is opposite to the direction of motion and is proportional to 
the square of the plane’s speed (v). In this case, the problem 
consists of solving the differential equation that describes the 
vertical motion of the plane and calculating its trajectory over 
time.

In the Python programming language, the SciPy library 
can be used to solve differential equations, since it has 
physics frameworks in its content. In the following code, how 
some input data is collected from the operator beforehand. 

The function that uses the library calculates the differential 
equation without the need for the equation to be solved 
manually. The differential equation, applied to an engineering 
problem, brings together knowledge developed mainly 
from the calculations of Newton and other physicists and 
mathematicians related throughout the article.

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
# Function that defines the differential equation of the vertical 
motion of the plane 
def movimento_aviao(t, y, mass, gravity, lift_coef, drag_coef):
    # y[0] is the position (altitude) of the plane
    # y[1] is the position (altitude) of the plane
    altitude = y[0]
    velocity = y[1]
        # Differential equation for the vertical motion of the plane
    dydt = [velocity,
            (lift_coef * velocity**2 - drag_coef * velocity**2 - mass 
* gravity) / mass]
        return dydt
# Initial conditions
altitude_inicial = float(input(“Inform the initial altitude of the 
plane in meters: “))
velocidade_inicial = float(input(“Inform the initial speed of the 
plane in meters per seconds: “))
massa_aviao = float(input(“Inform the mass of the plane in 
kilograms: “))
aceleracao_gravidade = float(input(“Acceleration due to gravity 
in meters per second squared: ”))
# Lift and drag coefficients or adjust according to the plane and 
environment
coeficiente_sustentacao = 0.1
coeficiente_arrasto = 0.05
# Time range for the solution (from 0 to 100 seconds, for example)
tempo_inicial = 0
tempo_final = 100
intervalo_tempo = np.linspace(tempo_inicial, tempo_final, 1000)
# Initial conditions for solving the differential equation
condicoes_iniciais = [altitude_inicial, velocidade_inicial]
# Initial conditions for solving the differential equation
solucao = solve_ivp(movimento_aviao, [tempo_inicial, tempo_
final], condicoes_iniciais,
t_eval=intervalo_tempo, args=(massa_aviao, aceleracao_
gravidade,
coeficiente_sustentacao, coeficiente_arrasto))
# Initial conditions for solving the differential equation
plt.figure(figsize=(8, 6))
plt.plot(solucao.t, solucao.y[0], ‘b’, label=’Altitude do avião’)
plt.xlabel(‘Tempo (s)’)
plt.ylabel(‘Altitude (m)’)
plt.legend()
plt.grid()
plt.title(‘Trajetória Vertical do Avião’)
plt.show()

Calculus has a significant relevance in the training of 
professionals who work with engineering. It allows people 
to see how science somehow connects with reality. Although 
it has errors, because it is a human language production and 
does not describe the external reality to the subjects exactly, 
due to the human limits of reaching the reality itself, it works.

Mathematical modeling of complex aviation systems is 
necessary for the design, analysis and operation of aircraft, 
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providing information for engineers and pilots to make safer 
decision-making at all stages. Differential equations are 
used to calculate the flight dynamics, in order to describe 
the movement of the aircraft in three-dimensional space, 
considering the aerodynamic forces and moments, the 
propulsion force of the engines and the gravitational forces. In 
these calculations, it is necessary to model the aircraft’s roll, 
pitch, yaw and altitude changes over time.

In flight control, stability calculations also involve 
differential equations. Control systems are designed to keep 
the aircraft on a desired trajectory, stabilize it in different flight 
conditions, and deal with external disturbances. The equations 
are also used to model aircraft performance in different phases 
of flight, such as takeoff, cruise and landing, which includes 
determining speeds, altitudes, climb and descent rates and 
distances traveled during different maneuvers.

In aerodynamic calculations, differential equations are also 
used that govern the flow of air around aircraft, which include 
equations that describe the behavior of airfoils, drag, lift and 
other aspects related to force and aerodynamic moment. In 
systems simulation, differential equations are used to simulate 
the behavior of complex aircraft systems, such as electrical, 
hydraulic and control systems, allowing the evaluation of 
the performance and interaction of systems in different 
flight situations. Finally, in weather forecasting, differential 
equations are used in atmospheric models to predict weather 
conditions around aircraft at different altitudes and positions. 
These predictions are very relevant for route planning and for 
the engineering team to decide whether or not to maintain a 
flight in operation.

In the last century, changes in physics have led to deeper 
training of engineers in modeling. The possibility of hidden 
variables beyond the system of balance of forces between 
two sides brought more “complexity” to classical mechanics. 
Experimental observations showed that the energy of 
the electrons depended on the frequency of the light, not 
the intensity. He proposed that there would be packets of 
energy, or “quanta”, called photons. In this sense, Einstein 
and Planck realized that the photon behaved like a particle. 
This generated transformations in particle calculations under 
certain conditions in the field of engineering.

Engineers consider the field of quantum mechanics 
in studying the behavior of semiconductors and modern 
electronic devices, and also in calculating the behavior of 
subatomic particles on very small scales. Even in aviation, 
considering gravitational forces, certain concepts of quantum 
mechanics are taken into account.

When dealing with the uncertainties brought by anti-
realism in the construction of complex systems, engineers 
had to learn to deal with uncertainties brought by the collapse 
of the wave function in certain situations. Although the data 
taken from the experiment started to show less consistency, 
which required more precise calculations and also adjustment 
systems and a greater need for empirical data for decision 

making in relation to certain problems, the corrections that 
had to be made in the models were small so that satisfactory 
results could be obtained. The Newtonian/Laplacian clock of 
the universe remained valid after the need for adjustments to 
the second scale (Carroll, 2016, p. 166).

5 Considerations

According to Strogatz (2019), “since Newton, mankind has 
come to realize that the laws of physics are always expressed 
in the language of differential equations”. The consequence of 
the development of physics, applied mathematics, computing 
and other areas constitutes critical thinking capable of solving 
problems associated with variables with dynamic behavior 
over time. This is of great importance to several segments 
of the industry. With examples of the context of the use of 
calculus in engineering, one can better understand its content 
and how physics and mathematics connect effectively with 
engineering and computing. With relativistic problems, 
classical mechanics remains valid but calculations are 
performed with probabilities.

With the technological advances of the last century, 
applied mathematical modeling has shown itself not only 
as a form of epistemological production, but with even a 
minimal portion of connection with external reality, even 
if in an “improvised” and temporary way. If the idea of 
correspondence between logical formulations and external 
reality itself has been replaced by the idea of a ship that, while 
moving, the bottom planks are adjusted during its movement, 
even so the constructs of physics and mathematics remain 
valid.

In this sense, extreme relativist discourses do not have 
empirical support, since planes remain in the skies. On the 
other hand, it must be understood that utilitarian discourses 
mobilize science and technology as discursive elements. With 
this article, we seek to carry out a systematic review on the 
subject of models, from the conception of models as a mould, 
model, sculpture, behavior, to the theoretical conception of 
a model, as a paradigm, a formula, a mental, scientific and 
computational structure. Parallel to this, the visualization of 
certain calculus ideas and how they make sense in solving 
engineering computational problems.
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